4.37.16 f(y(x))y(x)2+g(y(x))+y(x)=0

ODE
f(y(x))y(x)2+g(y(x))+y(x)=0 ODE Classification

[[_2nd_order, _missing_x]]

Book solution method
TO DO

Mathematica
cpu = 90.464 (sec), leaf count = 144

{{y(x)InverseFunction[1#1e1K[3]f(K[1])dK[1]21K[3]g(K[2])(e21K[2]f(K[1])dK[1])dK[2]+c1dK[3]&][c2+x]},{y(x)InverseFunction[1#1e1K[4]f(K[1])dK[1]21K[4]g(K[2])(e21K[2]f(K[1])dK[1])dK[2]+c1dK[4]&][c2+x]}}

Maple
cpu = 0.231 (sec), leaf count = 98

{y(x)e2f(_f)d_f1e2f(_f)d_f(2(ef(_f)d_f)2g(_f)d_f+_C1)d_fx_C2=0,y(x)e2f(_f)d_f1e2f(_f)d_f(2(ef(_f)d_f)2g(_f)d_f+_C1)d_fx_C2=0} Mathematica raw input

DSolve[g[y[x]] + f[y[x]]*y'[x]^2 + y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> InverseFunction[Integrate[-(1/(E^Integrate[-f[K[1]], {K[1], 1, K[3]}]*
Sqrt[C[1] + 2*Integrate[-(g[K[2]]/E^(2*Integrate[-f[K[1]], {K[1], 1, K[2]}])), {
K[2], 1, K[3]}]])), {K[3], 1, #1}] & ][x + C[2]]}, {y[x] -> InverseFunction[Inte
grate[1/(E^Integrate[-f[K[1]], {K[1], 1, K[4]}]*Sqrt[C[1] + 2*Integrate[-(g[K[2]
]/E^(2*Integrate[-f[K[1]], {K[1], 1, K[2]}])), {K[2], 1, K[4]}]]), {K[4], 1, #1}
] & ][x + C[2]]}}

Maple raw input

dsolve(diff(diff(y(x),x),x)+f(y(x))*diff(y(x),x)^2+g(y(x)) = 0, y(x),'implicit')

Maple raw output

Intat(exp(2*Int(f(_f),_f))/(exp(2*Int(f(_f),_f))*(-2*Int(exp(Int(f(_f),_f))^2*g(
_f),_f)+_C1))^(1/2),_f = y(x))-x-_C2 = 0, Intat(-exp(2*Int(f(_f),_f))/(exp(2*Int
(f(_f),_f))*(-2*Int(exp(Int(f(_f),_f))^2*g(_f),_f)+_C1))^(1/2),_f = y(x))-x-_C2 
= 0