[[_2nd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 90.464 (sec), leaf count = 144
Maple ✓
cpu = 0.231 (sec), leaf count = 98
DSolve[g[y[x]] + f[y[x]]*y'[x]^2 + y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> InverseFunction[Integrate[-(1/(E^Integrate[-f[K[1]], {K[1], 1, K[3]}]*
Sqrt[C[1] + 2*Integrate[-(g[K[2]]/E^(2*Integrate[-f[K[1]], {K[1], 1, K[2]}])), {
K[2], 1, K[3]}]])), {K[3], 1, #1}] & ][x + C[2]]}, {y[x] -> InverseFunction[Inte
grate[1/(E^Integrate[-f[K[1]], {K[1], 1, K[4]}]*Sqrt[C[1] + 2*Integrate[-(g[K[2]
]/E^(2*Integrate[-f[K[1]], {K[1], 1, K[2]}])), {K[2], 1, K[4]}]]), {K[4], 1, #1}
] & ][x + C[2]]}}
Maple raw input
dsolve(diff(diff(y(x),x),x)+f(y(x))*diff(y(x),x)^2+g(y(x)) = 0, y(x),'implicit')
Maple raw output
Intat(exp(2*Int(f(_f),_f))/(exp(2*Int(f(_f),_f))*(-2*Int(exp(Int(f(_f),_f))^2*g(
_f),_f)+_C1))^(1/2),_f = y(x))-x-_C2 = 0, Intat(-exp(2*Int(f(_f),_f))/(exp(2*Int
(f(_f),_f))*(-2*Int(exp(Int(f(_f),_f))^2*g(_f),_f)+_C1))^(1/2),_f = y(x))-x-_C2
= 0