4.37.21 \(y''(x)=(a-x) y'(x)^3\)

ODE
\[ y''(x)=(a-x) y'(x)^3 \] ODE Classification

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

Book solution method
TO DO

Mathematica
cpu = 0.0390364 (sec), leaf count = 61

\[\left \{\left \{y(x)\to c_2-\log \left (\sqrt {-2 a x-2 c_1+x^2}-a+x\right )\right \},\left \{y(x)\to \log \left (\sqrt {-2 a x-2 c_1+x^2}-a+x\right )+c_2\right \}\right \}\]

Maple
cpu = 0.111 (sec), leaf count = 57

\[ \left \{ y \left ( x \right ) =-\ln \left ( x-a+\sqrt {{a}^{2}-2\,ax+{x}^{2}-{\it \_C1}} \right ) +{\it \_C2},y \left ( x \right ) =\ln \left ( x-a+\sqrt {{a}^{2}-2\,ax+{x}^{2}-{\it \_C1}} \right ) +{\it \_C2} \right \} \] Mathematica raw input

DSolve[y''[x] == (a - x)*y'[x]^3,y[x],x]

Mathematica raw output

{{y[x] -> C[2] - Log[-a + x + Sqrt[-2*a*x + x^2 - 2*C[1]]]}, {y[x] -> C[2] + Log
[-a + x + Sqrt[-2*a*x + x^2 - 2*C[1]]]}}

Maple raw input

dsolve(diff(diff(y(x),x),x) = (a-x)*diff(y(x),x)^3, y(x),'implicit')

Maple raw output

y(x) = ln(x-a+(a^2-2*a*x+x^2-_C1)^(1/2))+_C2, y(x) = -ln(x-a+(a^2-2*a*x+x^2-_C1)
^(1/2))+_C2