ODE
\[ y''(x)=a y(x) \left (y'(x)^2+1\right )^{3/2} \] ODE Classification
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.826251 (sec), leaf count = 350
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\frac {\sqrt {\frac {\text {$\#$1}^2 a+2 c_1-2}{c_1-1}} \sqrt {\frac {\text {$\#$1}^2 a+2 c_1+2}{c_1+1}} \left (F\left (i \sinh ^{-1}\left (\sqrt {\frac {a}{2 c_1+2}} \text {$\#$1}\right )|\frac {c_1+1}{c_1-1}\right )+\left (c_1-1\right ) E\left (i \sinh ^{-1}\left (\sqrt {\frac {a}{2 c_1+2}} \text {$\#$1}\right )|\frac {c_1+1}{c_1-1}\right )\right )}{\sqrt {\frac {a}{2 c_1+2}} \sqrt {\text {$\#$1}^4 a^2+4 \text {$\#$1}^2 a c_1+4 c_1^2-4}}\& \right ]\left [c_2+x\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [\frac {\sqrt {\frac {\text {$\#$1}^2 a+2 c_1-2}{c_1-1}} \sqrt {\frac {\text {$\#$1}^2 a+2 c_1+2}{c_1+1}} \left (F\left (i \sinh ^{-1}\left (\sqrt {\frac {a}{2 c_1+2}} \text {$\#$1}\right )|\frac {c_1+1}{c_1-1}\right )+\left (c_1-1\right ) E\left (i \sinh ^{-1}\left (\sqrt {\frac {a}{2 c_1+2}} \text {$\#$1}\right )|\frac {c_1+1}{c_1-1}\right )\right )}{\sqrt {\frac {a}{2 c_1+2}} \sqrt {\text {$\#$1}^4 a^2+4 \text {$\#$1}^2 a c_1+4 c_1^2-4}}\& \right ]\left [c_2+x\right ]\right \}\right \}\]
Maple ✓
cpu = 0.178 (sec), leaf count = 84
\[ \left \{ \int ^{y \left ( x \right ) }\!{a \left ( {{\it \_a}}^{2}+2\,{\it \_C1} \right ) {\frac {1}{\sqrt {4-{a}^{2} \left ( {{\it \_a}}^{2}+2\,{\it \_C1} \right ) ^{2}}}}}{d{\it \_a}}-x-{\it \_C2}=0,\int ^{y \left ( x \right ) }\!-{a \left ( {{\it \_a}}^{2}+2\,{\it \_C1} \right ) {\frac {1}{\sqrt {4-{a}^{2} \left ( {{\it \_a}}^{2}+2\,{\it \_C1} \right ) ^{2}}}}}{d{\it \_a}}-x-{\it \_C2}=0 \right \} \] Mathematica raw input
DSolve[y''[x] == a*y[x]*(1 + y'[x]^2)^(3/2),y[x],x]
Mathematica raw output
{{y[x] -> InverseFunction[-((((-1 + C[1])*EllipticE[I*ArcSinh[Sqrt[a/(2 + 2*C[1]
)]*#1], (1 + C[1])/(-1 + C[1])] + EllipticF[I*ArcSinh[Sqrt[a/(2 + 2*C[1])]*#1],
(1 + C[1])/(-1 + C[1])])*Sqrt[(-2 + 2*C[1] + a*#1^2)/(-1 + C[1])]*Sqrt[(2 + 2*C[
1] + a*#1^2)/(1 + C[1])])/(Sqrt[a/(2 + 2*C[1])]*Sqrt[-4 + 4*C[1]^2 + 4*a*C[1]*#1
^2 + a^2*#1^4])) & ][x + C[2]]}, {y[x] -> InverseFunction[(((-1 + C[1])*Elliptic
E[I*ArcSinh[Sqrt[a/(2 + 2*C[1])]*#1], (1 + C[1])/(-1 + C[1])] + EllipticF[I*ArcS
inh[Sqrt[a/(2 + 2*C[1])]*#1], (1 + C[1])/(-1 + C[1])])*Sqrt[(-2 + 2*C[1] + a*#1^
2)/(-1 + C[1])]*Sqrt[(2 + 2*C[1] + a*#1^2)/(1 + C[1])])/(Sqrt[a/(2 + 2*C[1])]*Sq
rt[-4 + 4*C[1]^2 + 4*a*C[1]*#1^2 + a^2*#1^4]) & ][x + C[2]]}}
Maple raw input
dsolve(diff(diff(y(x),x),x) = a*y(x)*(1+diff(y(x),x)^2)^(3/2), y(x),'implicit')
Maple raw output
Intat(1/(4-a^2*(_a^2+2*_C1)^2)^(1/2)*(_a^2+2*_C1)*a,_a = y(x))-x-_C2 = 0, Intat(
-1/(4-a^2*(_a^2+2*_C1)^2)^(1/2)*(_a^2+2*_C1)*a,_a = y(x))-x-_C2 = 0