ODE
\[ x y''(x)+2 y'(x)+x y(x)^5=0 \] ODE Classification
[_Emden, [_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 57.8507 (sec), leaf count = 11689
\[\left \{\text {Solve}\left [\frac {2 \sqrt {3} \sqrt {x} F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2}{\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}}\right )|\frac {\left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,2\right ]\right ) \text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ]}{\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ]\right )}\right ) y(x) \sqrt {\frac {\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,2\right ]-y(x)^2\right )}{\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}} \left (y(x)^2-\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ]\right )}{\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ] \sqrt {\frac {\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2 \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ]-y(x)^2\right )}{\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ]{}^2 \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right ){}^2}} \sqrt {-4 x^3 y(x)^6+3 x y(x)^2+12 c_1}}=c_2+\int _1^x -\frac {-12 F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}}\right )|\frac {\left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]\right ) \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right )}\right ) K[2]^3 \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 K[2]^3+\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]{}^2 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] K[2]^3+3 c_1\right ) \sqrt {\frac {\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2 \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]-y(x)^2\right )}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right ){}^2}} y(x)^9+4 \sqrt {3} K[2]^{5/2} \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 K[2]^3+\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]{}^2 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] K[2]^3+\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]{}^2 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] K[2]^3+\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]{}^2+\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]{}^2\right ) K[2]^3+12 c_1\right ) \sqrt {\frac {\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]-y(x)^2\right )}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}} \sqrt {-4 K[2]^3 y(x)^6+3 K[2] y(x)^2+12 c_1} y(x)^8+6 F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}}\right )|\frac {\left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]\right ) \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right )}\right ) K[2]^4 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] \left (-4 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]{}^2 K[2]^2+4 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] K[2]^2+3\right ) \sqrt {\frac {\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2 \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]-y(x)^2\right )}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right ){}^2}} y(x)^7-4 \sqrt {3} K[2]^{11/2} \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]+2 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) \sqrt {\frac {\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]-y(x)^2\right )}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}} \sqrt {-4 K[2]^3 y(x)^6+3 K[2] y(x)^2+12 c_1} y(x)^6-9 F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}}\right )|\frac {\left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]\right ) \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right )}\right ) K[2] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]{}^2 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] \left (4 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] K[2]^2+1\right ) K[2]^3+\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] \left (K[2] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]-12 c_1\right ) K[2]^2+3 c_1\right ) \sqrt {\frac {\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2 \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]-y(x)^2\right )}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right ){}^2}} y(x)^5-3 \sqrt {3} \sqrt {K[2]} \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 K[2]^3+\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]{}^2 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] K[2]^3+\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]{}^2 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] K[2]^3+\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]{}^2+\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]{}^2\right ) K[2]^3+12 c_1\right ) \sqrt {\frac {\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]-y(x)^2\right )}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}} \sqrt {-4 K[2]^3 y(x)^6+3 K[2] y(x)^2+12 c_1} y(x)^4-72 c_1 F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}}\right )|\frac {\left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]\right ) \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right )}\right ) \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 K[2]^3+\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]{}^2 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] K[2]^3+3 c_1\right ) \sqrt {\frac {\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2 \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]-y(x)^2\right )}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right ){}^2}} y(x)^3-\frac {3 \sqrt {3} \left (4 c_1 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]{}^2 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] K[2]^3+\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \left (\left (4 c_1-K[2] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]{}^2-2 K[2] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]+4 c_1 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]{}^2\right ) K[2]^3+4 c_1 \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 K[2]^3+\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]{}^2 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] K[2]^3+12 c_1\right )\right ) \sqrt {\frac {\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]-y(x)^2\right )}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}} \sqrt {-4 K[2]^3 y(x)^6+3 K[2] y(x)^2+12 c_1} y(x)^2}{\sqrt {K[2]}}+9 c_1 F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}}\right )|\frac {\left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]\right ) \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right )}\right ) K[2] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] \left (-4 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]{}^2 K[2]^2+4 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] K[2]^2+3\right ) \sqrt {\frac {\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2 \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]-y(x)^2\right )}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right ){}^2}} y(x)+12 \sqrt {3} c_1 K[2]^{5/2} \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]+2 \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) \sqrt {\frac {\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]-y(x)^2\right )}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}} \sqrt {-4 K[2]^3 y(x)^6+3 K[2] y(x)^2+12 c_1}}{\sqrt {3} K[2]^{7/2} \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) \sqrt {\frac {\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ]-y(x)^2\right )}{\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}} \left (y(x)^2-\text {Root}\left [4 K[2]^3 \text {$\#$1}^3-3 K[2] \text {$\#$1}-12 c_1\& ,3\right ]\right ) \left (-4 K[2]^3 y(x)^6+3 K[2] y(x)^2+12 c_1\right ){}^{3/2}} \, dK[2],y(x)\right ],\text {Solve}\left [\frac {2 \sqrt {3} \sqrt {x} F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2}{\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}}\right )|\frac {\left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,2\right ]\right ) \text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ]}{\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ]\right )}\right ) y(x) \sqrt {\frac {\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,2\right ]-y(x)^2\right )}{\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}} \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ]-y(x)^2\right )}{\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ] \sqrt {\frac {\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2 \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ]-y(x)^2\right )}{\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,3\right ]{}^2 \left (\text {Root}\left [4 x^3 \text {$\#$1}^3-3 x \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right ){}^2}} \sqrt {-4 x^3 y(x)^6+3 x y(x)^2+12 c_1}}=c_2+\int _1^x -\frac {12 F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}}\right )|\frac {\left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]\right ) \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right )}\right ) K[1]^3 \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 K[1]^3+\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]{}^2 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] K[1]^3+3 c_1\right ) \sqrt {\frac {\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2 \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]-y(x)^2\right )}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right ){}^2}} y(x)^9+4 \sqrt {3} K[1]^{5/2} \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 K[1]^3+\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]{}^2 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] K[1]^3+\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]{}^2 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] K[1]^3+\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]{}^2+\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]{}^2\right ) K[1]^3+12 c_1\right ) \sqrt {\frac {\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]-y(x)^2\right )}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}} \sqrt {-4 K[1]^3 y(x)^6+3 K[1] y(x)^2+12 c_1} y(x)^8-6 F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}}\right )|\frac {\left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]\right ) \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right )}\right ) K[1]^4 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] \left (-4 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]{}^2 K[1]^2+4 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] K[1]^2+3\right ) \sqrt {\frac {\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2 \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]-y(x)^2\right )}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right ){}^2}} y(x)^7-4 \sqrt {3} K[1]^{11/2} \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]+2 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) \sqrt {\frac {\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]-y(x)^2\right )}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}} \sqrt {-4 K[1]^3 y(x)^6+3 K[1] y(x)^2+12 c_1} y(x)^6+9 F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}}\right )|\frac {\left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]\right ) \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right )}\right ) K[1] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]{}^2 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] \left (4 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] K[1]^2+1\right ) K[1]^3+\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] \left (K[1] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]-12 c_1\right ) K[1]^2+3 c_1\right ) \sqrt {\frac {\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2 \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]-y(x)^2\right )}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right ){}^2}} y(x)^5-3 \sqrt {3} \sqrt {K[1]} \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 K[1]^3+\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]{}^2 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] K[1]^3+\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]{}^2 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] K[1]^3+\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]{}^2+\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]{}^2\right ) K[1]^3+12 c_1\right ) \sqrt {\frac {\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]-y(x)^2\right )}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}} \sqrt {-4 K[1]^3 y(x)^6+3 K[1] y(x)^2+12 c_1} y(x)^4+72 c_1 F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}}\right )|\frac {\left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]\right ) \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right )}\right ) \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 K[1]^3+\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]{}^2 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] K[1]^3+3 c_1\right ) \sqrt {\frac {\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2 \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]-y(x)^2\right )}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right ){}^2}} y(x)^3-\frac {3 \sqrt {3} \left (4 c_1 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]{}^2 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] K[1]^3+\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \left (\left (4 c_1-K[1] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]{}^2-2 K[1] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]+4 c_1 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]{}^2\right ) K[1]^3+4 c_1 \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 K[1]^3+\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]{}^2 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] K[1]^3+12 c_1\right )\right ) \sqrt {\frac {\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]-y(x)^2\right )}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}} \sqrt {-4 K[1]^3 y(x)^6+3 K[1] y(x)^2+12 c_1} y(x)^2}{\sqrt {K[1]}}-9 c_1 F\left (\sin ^{-1}\left (\sqrt {\frac {\left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}}\right )|\frac {\left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]\right ) \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right )}\right ) K[1] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] \left (-4 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]{}^2 K[1]^2+4 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] K[1]^2+3\right ) \sqrt {\frac {\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) y(x)^2 \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]-y(x)^2\right )}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]{}^2 \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right ){}^2}} y(x)+12 \sqrt {3} c_1 K[1]^{5/2} \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]+2 \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) \sqrt {\frac {\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]-y(x)^2\right )}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}} \sqrt {-4 K[1]^3 y(x)^6+3 K[1] y(x)^2+12 c_1}}{\sqrt {3} K[1]^{7/2} \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) \sqrt {\frac {\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ]-y(x)^2\right )}{\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,2\right ] \left (\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,1\right ]-y(x)^2\right )}} \left (y(x)^2-\text {Root}\left [4 K[1]^3 \text {$\#$1}^3-3 K[1] \text {$\#$1}-12 c_1\& ,3\right ]\right ) \left (-4 K[1]^3 y(x)^6+3 K[1] y(x)^2+12 c_1\right ){}^{3/2}} \, dK[1],y(x)\right ]\right \}\]
Maple ✓
cpu = 0.419 (sec), leaf count = 75
\[ \left \{ -{\frac {\ln \left ( x \right ) }{2}}-3\,\int ^{y \left ( x \right ) \sqrt {x}}\!{\frac {1}{\sqrt {-12\,{{\it \_f}}^{6}+9\,{{\it \_f}}^{2}+9\,{\it \_C1}}}}{d{\it \_f}}-{\it \_C2}=0,-{\frac {\ln \left ( x \right ) }{2}}+3\,\int ^{y \left ( x \right ) \sqrt {x}}\!{\frac {1}{\sqrt {-12\,{{\it \_f}}^{6}+9\,{{\it \_f}}^{2}+9\,{\it \_C1}}}}{d{\it \_f}}-{\it \_C2}=0 \right \} \] Mathematica raw input
DSolve[x*y[x]^5 + 2*y'[x] + x*y''[x] == 0,y[x],x]
Mathematica raw output
{Solve[(2*Sqrt[3]*Sqrt[x]*EllipticF[ArcSin[Sqrt[((Root[-12*C[1] - 3*x*#1 + 4*x^3
*#1^3 & , 1] - Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 3])*y[x]^2)/(Root[-12*C[1
] - 3*x*#1 + 4*x^3*#1^3 & , 3]*(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 1] - y[x
]^2))]], ((Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 1] - Root[-12*C[1] - 3*x*#1 +
4*x^3*#1^3 & , 2])*Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 3])/(Root[-12*C[1] -
3*x*#1 + 4*x^3*#1^3 & , 2]*(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 1] - Root[-
12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 3]))]*y[x]*Sqrt[(Root[-12*C[1] - 3*x*#1 + 4*x^
3*#1^3 & , 1]*(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 2] - y[x]^2))/(Root[-12*C
[1] - 3*x*#1 + 4*x^3*#1^3 & , 2]*(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 1] - y
[x]^2))]*(-Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 3] + y[x]^2))/(Root[-12*C[1]
- 3*x*#1 + 4*x^3*#1^3 & , 3]*Sqrt[(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 1]*(R
oot[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 1] - Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3
& , 3])*y[x]^2*(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 3] - y[x]^2))/(Root[-12*
C[1] - 3*x*#1 + 4*x^3*#1^3 & , 3]^2*(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 1]
- y[x]^2)^2)]*Sqrt[12*C[1] + 3*x*y[x]^2 - 4*x^3*y[x]^6]) == C[2] + Integrate[-((
9*C[1]*EllipticF[ArcSin[Sqrt[((Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]
- Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3])*y[x]^2)/(Root[-12*C[1] - 3*K
[2]*#1 + 4*K[2]^3*#1^3 & , 3]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]
- y[x]^2))]], ((Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - Root[-12*C[1]
- 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2])*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 &
, 3])/(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[2]
*#1 + 4*K[2]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]))]
*K[2]*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*Root[-12*C[1] - 3*K[2]*#1
+ 4*K[2]^3*#1^3 & , 3]*(3 - 4*K[2]^2*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3
& , 2]^2 + 4*K[2]^2*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*Root[-12*C[
1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3])*y[x]*Sqrt[(Root[-12*C[1] - 3*K[2]*#1 + 4*
K[2]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - Root[-12*
C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3])*y[x]^2*(Root[-12*C[1] - 3*K[2]*#1 + 4*K
[2]^3*#1^3 & , 3] - y[x]^2))/(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]^2
*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - y[x]^2)^2)] - 72*C[1]*Ellip
ticF[ArcSin[Sqrt[((Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - Root[-12*C
[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3])*y[x]^2)/(Root[-12*C[1] - 3*K[2]*#1 + 4*K
[2]^3*#1^3 & , 3]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - y[x]^2))]]
, ((Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[2]*#1
+ 4*K[2]^3*#1^3 & , 2])*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3])/(Root
[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]
^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]))]*(3*C[1] + K
[2]^3*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]^2*Root[-12*C[1] - 3*K[2]*
#1 + 4*K[2]^3*#1^3 & , 3] + K[2]^3*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & ,
1]*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]^2)*y[x]^3*Sqrt[(Root[-12*C[
1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3
& , 1] - Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3])*y[x]^2*(Root[-12*C[1
] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3] - y[x]^2))/(Root[-12*C[1] - 3*K[2]*#1 + 4*K
[2]^3*#1^3 & , 3]^2*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - y[x]^2)^
2)] - 9*EllipticF[ArcSin[Sqrt[((Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]
- Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3])*y[x]^2)/(Root[-12*C[1] - 3*
K[2]*#1 + 4*K[2]^3*#1^3 & , 3]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]
- y[x]^2))]], ((Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - Root[-12*C[1
] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2])*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3
& , 3])/(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[2
]*#1 + 4*K[2]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]))
]*K[2]*(3*C[1] + K[2]^2*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*Root[-1
2*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]*(-12*C[1] + K[2]*Root[-12*C[1] - 3*K[2
]*#1 + 4*K[2]^3*#1^3 & , 3]) + K[2]^3*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3
& , 1]^2*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]*(1 + 4*K[2]^2*Root[-12
*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1
^3 & , 3]))*y[x]^5*Sqrt[(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*(Root[
-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]
^3*#1^3 & , 3])*y[x]^2*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3] - y[x]^
2))/(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]^2*(Root[-12*C[1] - 3*K[2]*
#1 + 4*K[2]^3*#1^3 & , 1] - y[x]^2)^2)] + 6*EllipticF[ArcSin[Sqrt[((Root[-12*C[1
] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3
& , 3])*y[x]^2)/(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]*(Root[-12*C[1
] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - y[x]^2))]], ((Root[-12*C[1] - 3*K[2]*#1 +
4*K[2]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2])*Root[-
12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3])/(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^
3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - Root[-12*C[1]
- 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]))]*K[2]^4*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^
3*#1^3 & , 1]*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]*(3 - 4*K[2]^2*Roo
t[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]^2 + 4*K[2]^2*Root[-12*C[1] - 3*K[2
]*#1 + 4*K[2]^3*#1^3 & , 1]*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3])*y[
x]^7*Sqrt[(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K
[2]*#1 + 4*K[2]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]
)*y[x]^2*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3] - y[x]^2))/(Root[-12*
C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]^2*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*
#1^3 & , 1] - y[x]^2)^2)] - 12*EllipticF[ArcSin[Sqrt[((Root[-12*C[1] - 3*K[2]*#1
+ 4*K[2]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3])*y[x]
^2)/(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]*(Root[-12*C[1] - 3*K[2]*#1
+ 4*K[2]^3*#1^3 & , 1] - y[x]^2))]], ((Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^
3 & , 1] - Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2])*Root[-12*C[1] - 3*K
[2]*#1 + 4*K[2]^3*#1^3 & , 3])/(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]
*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[2]*#1 +
4*K[2]^3*#1^3 & , 3]))]*K[2]^3*(3*C[1] + K[2]^3*Root[-12*C[1] - 3*K[2]*#1 + 4*K
[2]^3*#1^3 & , 1]^2*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3] + K[2]^3*Ro
ot[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2
]^3*#1^3 & , 3]^2)*y[x]^9*Sqrt[(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]
*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[2]*#1 +
4*K[2]^3*#1^3 & , 3])*y[x]^2*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]
- y[x]^2))/(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]^2*(Root[-12*C[1] -
3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - y[x]^2)^2)] + 12*Sqrt[3]*C[1]*K[2]^(5/2)*Root
[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^
3*#1^3 & , 2]*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]*(Root[-12*C[1] -
3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2] + 2*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 &
, 3])*Sqrt[(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*(Root[-12*C[1] - 3
*K[2]*#1 + 4*K[2]^3*#1^3 & , 2] - y[x]^2))/(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3
*#1^3 & , 2]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - y[x]^2))]*Sqrt[
12*C[1] + 3*K[2]*y[x]^2 - 4*K[2]^3*y[x]^6] - (3*Sqrt[3]*(4*C[1]*K[2]^3*Root[-12*
C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]^2*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#
1^3 & , 3] + 4*C[1]*(12*C[1] + K[2]^3*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3
& , 2]^2*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3] + K[2]^3*Root[-12*C[1]
- 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 &
, 3]^2) + K[2]^3*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*(4*C[1]*Root[-
12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]^2 - 2*K[2]*Root[-12*C[1] - 3*K[2]*#1
+ 4*K[2]^3*#1^3 & , 2]*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]^2 + Root
[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]^2*(4*C[1] - K[2]*Root[-12*C[1] - 3*
K[2]*#1 + 4*K[2]^3*#1^3 & , 3])))*y[x]^2*Sqrt[(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2
]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2] - y[x]^2))/(Ro
ot[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[
2]^3*#1^3 & , 1] - y[x]^2))]*Sqrt[12*C[1] + 3*K[2]*y[x]^2 - 4*K[2]^3*y[x]^6])/Sq
rt[K[2]] - 3*Sqrt[3]*Sqrt[K[2]]*(12*C[1] + K[2]^3*Root[-12*C[1] - 3*K[2]*#1 + 4*
K[2]^3*#1^3 & , 1]^2*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3] + K[2]^3*R
oot[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]^2*Root[-12*C[1] - 3*K[2]*#1 + 4*
K[2]^3*#1^3 & , 3] + K[2]^3*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]*Roo
t[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]^2 + K[2]^3*Root[-12*C[1] - 3*K[2]*
#1 + 4*K[2]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]^2 +
Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]^2))*y[x]^4*Sqrt[(Root[-12*C[1]
- 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 &
, 2] - y[x]^2))/(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]*(Root[-12*C[1]
- 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - y[x]^2))]*Sqrt[12*C[1] + 3*K[2]*y[x]^2 - 4
*K[2]^3*y[x]^6] - 4*Sqrt[3]*K[2]^(11/2)*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^
3 & , 1]*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]*Root[-12*C[1] - 3*K[2]
*#1 + 4*K[2]^3*#1^3 & , 3]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2] + 2
*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3])*y[x]^6*Sqrt[(Root[-12*C[1] -
3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & ,
2] - y[x]^2))/(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]*(Root[-12*C[1] -
3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - y[x]^2))]*Sqrt[12*C[1] + 3*K[2]*y[x]^2 - 4*K
[2]^3*y[x]^6] + 4*Sqrt[3]*K[2]^(5/2)*(12*C[1] + K[2]^3*Root[-12*C[1] - 3*K[2]*#1
+ 4*K[2]^3*#1^3 & , 1]^2*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3] + K[2
]^3*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]^2*Root[-12*C[1] - 3*K[2]*#1
+ 4*K[2]^3*#1^3 & , 3] + K[2]^3*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2
]*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]^2 + K[2]^3*Root[-12*C[1] - 3*
K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]
^2 + Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]^2))*y[x]^8*Sqrt[(Root[-12*
C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1
^3 & , 2] - y[x]^2))/(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]*(Root[-12
*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - y[x]^2))]*Sqrt[12*C[1] + 3*K[2]*y[x]^
2 - 4*K[2]^3*y[x]^6])/(Sqrt[3]*K[2]^(7/2)*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#
1^3 & , 1]*Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K
[2]*#1 + 4*K[2]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3]
)*Sqrt[(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K[2]
*#1 + 4*K[2]^3*#1^3 & , 2] - y[x]^2))/(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3
& , 2]*(Root[-12*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 1] - y[x]^2))]*(-Root[-12
*C[1] - 3*K[2]*#1 + 4*K[2]^3*#1^3 & , 3] + y[x]^2)*(12*C[1] + 3*K[2]*y[x]^2 - 4*
K[2]^3*y[x]^6)^(3/2))), {K[2], 1, x}], y[x]], Solve[(2*Sqrt[3]*Sqrt[x]*EllipticF
[ArcSin[Sqrt[((Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 1] - Root[-12*C[1] - 3*x*
#1 + 4*x^3*#1^3 & , 3])*y[x]^2)/(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 3]*(Roo
t[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 1] - y[x]^2))]], ((Root[-12*C[1] - 3*x*#1 +
4*x^3*#1^3 & , 1] - Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 2])*Root[-12*C[1] -
3*x*#1 + 4*x^3*#1^3 & , 3])/(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 2]*(Root[-
12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 1] - Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 3
]))]*y[x]*Sqrt[(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 1]*(Root[-12*C[1] - 3*x*
#1 + 4*x^3*#1^3 & , 2] - y[x]^2))/(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 2]*(R
oot[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 1] - y[x]^2))]*(Root[-12*C[1] - 3*x*#1 +
4*x^3*#1^3 & , 3] - y[x]^2))/(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 3]*Sqrt[(R
oot[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 1]*(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 &
, 1] - Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 3])*y[x]^2*(Root[-12*C[1] - 3*x*
#1 + 4*x^3*#1^3 & , 3] - y[x]^2))/(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 3]^2*
(Root[-12*C[1] - 3*x*#1 + 4*x^3*#1^3 & , 1] - y[x]^2)^2)]*Sqrt[12*C[1] + 3*x*y[x
]^2 - 4*x^3*y[x]^6]) == C[2] + Integrate[-((-9*C[1]*EllipticF[ArcSin[Sqrt[((Root
[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[1]*#1 + 4*K[1
]^3*#1^3 & , 3])*y[x]^2)/(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]*(Root
[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - y[x]^2))]], ((Root[-12*C[1] - 3*K
[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]
)*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3])/(Root[-12*C[1] - 3*K[1]*#1 +
4*K[1]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Root[-
12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]))]*K[1]*Root[-12*C[1] - 3*K[1]*#1 + 4
*K[1]^3*#1^3 & , 1]*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]*(3 - 4*K[1]
^2*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]^2 + 4*K[1]^2*Root[-12*C[1] -
3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & ,
3])*y[x]*Sqrt[(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*(Root[-12*C[1] -
3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 &
, 3])*y[x]^2*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3] - y[x]^2))/(Root[
-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]^2*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1
]^3*#1^3 & , 1] - y[x]^2)^2)] + 72*C[1]*EllipticF[ArcSin[Sqrt[((Root[-12*C[1] -
3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & ,
3])*y[x]^2)/(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]*(Root[-12*C[1] -
3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - y[x]^2))]], ((Root[-12*C[1] - 3*K[1]*#1 + 4*K
[1]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2])*Root[-12*C
[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3])/(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1
^3 & , 2]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Root[-12*C[1] - 3*
K[1]*#1 + 4*K[1]^3*#1^3 & , 3]))]*(3*C[1] + K[1]^3*Root[-12*C[1] - 3*K[1]*#1 + 4
*K[1]^3*#1^3 & , 1]^2*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3] + K[1]^3*
Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*Root[-12*C[1] - 3*K[1]*#1 + 4*K
[1]^3*#1^3 & , 3]^2)*y[x]^3*Sqrt[(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & ,
1]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[1]*#1
+ 4*K[1]^3*#1^3 & , 3])*y[x]^2*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3
] - y[x]^2))/(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]^2*(Root[-12*C[1]
- 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - y[x]^2)^2)] + 9*EllipticF[ArcSin[Sqrt[((Roo
t[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[1]*#1 + 4*K[
1]^3*#1^3 & , 3])*y[x]^2)/(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]*(Roo
t[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - y[x]^2))]], ((Root[-12*C[1] - 3*
K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2
])*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3])/(Root[-12*C[1] - 3*K[1]*#1
+ 4*K[1]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Root[
-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]))]*K[1]*(3*C[1] + K[1]^2*Root[-12*C[
1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3
& , 3]*(-12*C[1] + K[1]*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]) + K[1]
^3*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]^2*Root[-12*C[1] - 3*K[1]*#1
+ 4*K[1]^3*#1^3 & , 3]*(1 + 4*K[1]^2*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 &
, 2]*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]))*y[x]^5*Sqrt[(Root[-12*C
[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^
3 & , 1] - Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3])*y[x]^2*(Root[-12*C[
1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3] - y[x]^2))/(Root[-12*C[1] - 3*K[1]*#1 + 4*
K[1]^3*#1^3 & , 3]^2*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - y[x]^2)
^2)] - 6*EllipticF[ArcSin[Sqrt[((Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1
] - Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3])*y[x]^2)/(Root[-12*C[1] - 3
*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1
] - y[x]^2))]], ((Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Root[-12*C[
1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2])*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3
& , 3])/(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[
1]*#1 + 4*K[1]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3])
)]*K[1]^4*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*Root[-12*C[1] - 3*K[1
]*#1 + 4*K[1]^3*#1^3 & , 3]*(3 - 4*K[1]^2*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#
1^3 & , 2]^2 + 4*K[1]^2*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*Root[-1
2*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3])*y[x]^7*Sqrt[(Root[-12*C[1] - 3*K[1]*#
1 + 4*K[1]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Roo
t[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3])*y[x]^2*(Root[-12*C[1] - 3*K[1]*#1
+ 4*K[1]^3*#1^3 & , 3] - y[x]^2))/(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 &
, 3]^2*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - y[x]^2)^2)] + 12*Elli
pticF[ArcSin[Sqrt[((Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Root[-12*
C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3])*y[x]^2)/(Root[-12*C[1] - 3*K[1]*#1 + 4*
K[1]^3*#1^3 & , 3]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - y[x]^2))]
], ((Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[1]*#
1 + 4*K[1]^3*#1^3 & , 2])*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3])/(Roo
t[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1
]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]))]*K[1]^3*(3*
C[1] + K[1]^3*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]^2*Root[-12*C[1] -
3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3] + K[1]^3*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*
#1^3 & , 1]*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]^2)*y[x]^9*Sqrt[(Roo
t[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1
]^3*#1^3 & , 1] - Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3])*y[x]^2*(Root
[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3] - y[x]^2))/(Root[-12*C[1] - 3*K[1]*
#1 + 4*K[1]^3*#1^3 & , 3]^2*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] -
y[x]^2)^2)] + 12*Sqrt[3]*C[1]*K[1]^(5/2)*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1
^3 & , 1]*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]*Root[-12*C[1] - 3*K[1
]*#1 + 4*K[1]^3*#1^3 & , 3]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2] +
2*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3])*Sqrt[(Root[-12*C[1] - 3*K[1]
*#1 + 4*K[1]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2] - y
[x]^2))/(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[1
]*#1 + 4*K[1]^3*#1^3 & , 1] - y[x]^2))]*Sqrt[12*C[1] + 3*K[1]*y[x]^2 - 4*K[1]^3*
y[x]^6] - (3*Sqrt[3]*(4*C[1]*K[1]^3*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 &
, 1]^2*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3] + 4*C[1]*(12*C[1] + K[1]
^3*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]^2*Root[-12*C[1] - 3*K[1]*#1
+ 4*K[1]^3*#1^3 & , 3] + K[1]^3*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]
*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]^2) + K[1]^3*Root[-12*C[1] - 3*
K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*(4*C[1]*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3
& , 3]^2 - 2*K[1]*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]*Root[-12*C[1
] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]^2 + Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1
^3 & , 2]^2*(4*C[1] - K[1]*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3])))*y
[x]^2*Sqrt[(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*
K[1]*#1 + 4*K[1]^3*#1^3 & , 2] - y[x]^2))/(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*
#1^3 & , 2]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - y[x]^2))]*Sqrt[1
2*C[1] + 3*K[1]*y[x]^2 - 4*K[1]^3*y[x]^6])/Sqrt[K[1]] - 3*Sqrt[3]*Sqrt[K[1]]*(12
*C[1] + K[1]^3*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]^2*Root[-12*C[1]
- 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3] + K[1]^3*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3
*#1^3 & , 2]^2*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3] + K[1]^3*Root[-1
2*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#
1^3 & , 3]^2 + K[1]^3*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*(Root[-12
*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]^2 + Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^
3*#1^3 & , 3]^2))*y[x]^4*Sqrt[(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*
(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2] - y[x]^2))/(Root[-12*C[1] - 3*
K[1]*#1 + 4*K[1]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]
- y[x]^2))]*Sqrt[12*C[1] + 3*K[1]*y[x]^2 - 4*K[1]^3*y[x]^6] - 4*Sqrt[3]*K[1]^(1
1/2)*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*Root[-12*C[1] - 3*K[1]*#1
+ 4*K[1]^3*#1^3 & , 2]*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3]*(Root[-1
2*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2] + 2*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]
^3*#1^3 & , 3])*y[x]^6*Sqrt[(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*(R
oot[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2] - y[x]^2))/(Root[-12*C[1] - 3*K[
1]*#1 + 4*K[1]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] -
y[x]^2))]*Sqrt[12*C[1] + 3*K[1]*y[x]^2 - 4*K[1]^3*y[x]^6] + 4*Sqrt[3]*K[1]^(5/2
)*(12*C[1] + K[1]^3*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]^2*Root[-12*
C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3] + K[1]^3*Root[-12*C[1] - 3*K[1]*#1 + 4*K
[1]^3*#1^3 & , 2]^2*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3] + K[1]^3*Ro
ot[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1
]^3*#1^3 & , 3]^2 + K[1]^3*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*(Roo
t[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]^2 + Root[-12*C[1] - 3*K[1]*#1 + 4*
K[1]^3*#1^3 & , 3]^2))*y[x]^8*Sqrt[(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 &
, 1]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2] - y[x]^2))/(Root[-12*C[1]
- 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 &
, 1] - y[x]^2))]*Sqrt[12*C[1] + 3*K[1]*y[x]^2 - 4*K[1]^3*y[x]^6])/(Sqrt[3]*K[1]
^(7/2)*Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1]*Root[-12*C[1] - 3*K[1]*#
1 + 4*K[1]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 1] - Roo
t[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 3])*Sqrt[(Root[-12*C[1] - 3*K[1]*#1 +
4*K[1]^3*#1^3 & , 1]*(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2] - y[x]^2
))/(Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 & , 2]*(Root[-12*C[1] - 3*K[1]*#1
+ 4*K[1]^3*#1^3 & , 1] - y[x]^2))]*(-Root[-12*C[1] - 3*K[1]*#1 + 4*K[1]^3*#1^3 &
, 3] + y[x]^2)*(12*C[1] + 3*K[1]*y[x]^2 - 4*K[1]^3*y[x]^6)^(3/2))), {K[1], 1, x
}], y[x]]}
Maple raw input
dsolve(x*diff(diff(y(x),x),x)+2*diff(y(x),x)+x*y(x)^5 = 0, y(x),'implicit')
Maple raw output
-1/2*ln(x)+3*Intat(1/(-12*_f^6+9*_f^2+9*_C1)^(1/2),_f = y(x)*x^(1/2))-_C2 = 0, -
1/2*ln(x)-3*Intat(1/(-12*_f^6+9*_f^2+9*_C1)^(1/2),_f = y(x)*x^(1/2))-_C2 = 0