4.38.4 \(x y''(x)+x y'(x)^2=y'(x)\)

ODE
\[ x y''(x)+x y'(x)^2=y'(x) \] ODE Classification

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

Book solution method
TO DO

Mathematica
cpu = 0.0149203 (sec), leaf count = 17

\[\left \{\left \{y(x)\to \log \left (2 c_1+x^2\right )+c_2\right \}\right \}\]

Maple
cpu = 0.214 (sec), leaf count = 15

\[ \left \{ {\it \_C1}\,{x}^{2}-{\it \_C2}+{{\rm e}^{y \left ( x \right ) }}=0 \right \} \] Mathematica raw input

DSolve[x*y'[x]^2 + x*y''[x] == y'[x],y[x],x]

Mathematica raw output

{{y[x] -> C[2] + Log[x^2 + 2*C[1]]}}

Maple raw input

dsolve(x*diff(diff(y(x),x),x)+x*diff(y(x),x)^2 = diff(y(x),x), y(x),'implicit')

Maple raw output

_C1*x^2-_C2+exp(y(x)) = 0