[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]
Book solution method
TO DO
Mathematica ✓
cpu = 124.833 (sec), leaf count = 74
Maple ✓
cpu = 0.273 (sec), leaf count = 37
DSolve[x*y''[x] == -y[x]^2 - 2*y'[x] + x^2*y'[x]^2,y[x],x]
Mathematica raw output
Solve[C[2] + Integrate[-((1 + E^K[2]*C[1] + K[2])/(K[2] + E^K[2]*C[1]*K[2] + 2*K
[2]^2)), {K[2], 1, x}] == Integrate[-(x/(1 + E^(x*K[1])*C[1] + 2*x*K[1])), {K[1]
, 1, y[x]}], y[x]]
Maple raw input
dsolve(x*diff(diff(y(x),x),x) = x^2*diff(y(x),x)^2-2*diff(y(x),x)-y(x)^2, y(x),'implicit')
Maple raw output
ln(x)-_C2+Intat(-1/(exp(-_f)*exp(_f)*(_f+1)-exp(_f)*_C1+_f),_f = x*y(x)) = 0