4.38.7 xy(x)=x2y(x)22y(x)y(x)2

ODE
xy(x)=x2y(x)22y(x)y(x)2 ODE Classification

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

Book solution method
TO DO

Mathematica
cpu = 124.833 (sec), leaf count = 74

Solve[1xc1eK[2]+K[2]+1c1eK[2]K[2]+2K[2]2+K[2]dK[2]+c2=1y(x)xc1exK[1]+2xK[1]+1dK[1],y(x)]

Maple
cpu = 0.273 (sec), leaf count = 37

{ln(x)_C2+xy(x)(e_fe_f(_f+1)e_f_C1+_f)1d_f=0} Mathematica raw input

DSolve[x*y''[x] == -y[x]^2 - 2*y'[x] + x^2*y'[x]^2,y[x],x]

Mathematica raw output

Solve[C[2] + Integrate[-((1 + E^K[2]*C[1] + K[2])/(K[2] + E^K[2]*C[1]*K[2] + 2*K
[2]^2)), {K[2], 1, x}] == Integrate[-(x/(1 + E^(x*K[1])*C[1] + 2*x*K[1])), {K[1]
, 1, y[x]}], y[x]]

Maple raw input

dsolve(x*diff(diff(y(x),x),x) = x^2*diff(y(x),x)^2-2*diff(y(x),x)-y(x)^2, y(x),'implicit')

Maple raw output

ln(x)-_C2+Intat(-1/(exp(-_f)*exp(_f)*(_f+1)-exp(_f)*_C1+_f),_f = x*y(x)) = 0