4.38.14 \(a e^{y(x)-1}+x^2 y''(x)=0\)

ODE
\[ a e^{y(x)-1}+x^2 y''(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 8.6259 (sec), leaf count = 0 , could not solve

DSolve[a*E^(-1 + y[x]) + x^2*Derivative[2][y][x] == 0, y[x], x]

Maple
cpu = 0.779 (sec), leaf count = 60

\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {\it \_a},[ \left \{ {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) = \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2} \left ( {{\rm e}^{{\it \_a}-1}}{\it \_b} \left ( {\it \_a} \right ) a-1 \right ) \right \} , \left \{ {\it \_a}=y \left ( x \right ) ,{\it \_b} \left ( {\it \_a} \right ) ={\frac {1}{x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) }} \right \} , \left \{ x={{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}},y \left ( x \right ) ={\it \_a} \right \} ] \right ) \right \} \] Mathematica raw input

DSolve[a*E^(-1 + y[x]) + x^2*y''[x] == 0,y[x],x]

Mathematica raw output

DSolve[a*E^(-1 + y[x]) + x^2*Derivative[2][y][x] == 0, y[x], x]

Maple raw input

dsolve(x^2*diff(diff(y(x),x),x)+a*exp(y(x)-1) = 0, y(x),'implicit')

Maple raw output

y(x) = ODESolStruc(_a,[{diff(_b(_a),_a) = _b(_a)^2*(exp(_a-1)*_b(_a)*a-1)}, {_a 
= y(x), _b(_a) = 1/x/diff(y(x),x)}, {x = exp(Int(_b(_a),_a)+_C1), y(x) = _a}])