4.38.26 \(a y(x)^3+9 x^2 y''(x)+2 y(x)=0\)

ODE
\[ a y(x)^3+9 x^2 y''(x)+2 y(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 3.24699 (sec), leaf count = 0 , could not solve

DSolve[2*y[x] + a*y[x]^3 + 9*x^2*Derivative[2][y][x] == 0, y[x], x]

Maple
cpu = 0.101 (sec), leaf count = 31

\[ \left \{ y \left ( x \right ) ={\it \_C2}\,{\it JacobiSN} \left ( \left ( {\frac {\sqrt {2}}{2\,{x}^{3}}\sqrt {{x}^{{\frac {20}{3}}}a}}+{\it \_C1} \right ) {\it \_C2},i \right ) \sqrt [3]{x} \right \} \] Mathematica raw input

DSolve[2*y[x] + a*y[x]^3 + 9*x^2*y''[x] == 0,y[x],x]

Mathematica raw output

DSolve[2*y[x] + a*y[x]^3 + 9*x^2*Derivative[2][y][x] == 0, y[x], x]

Maple raw input

dsolve(9*x^2*diff(diff(y(x),x),x)+a*y(x)^3+2*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C2*JacobiSN((1/2/x^3*2^(1/2)*(x^(20/3)*a)^(1/2)+_C1)*_C2,I)*x^(1/3)