4.38.42 f(x)2y(x)=af(x)5+3f(x)f(x)f(x)2y(x)+3f(x)3

ODE
f(x)2y(x)=af(x)5+3f(x)f(x)f(x)2y(x)+3f(x)3 ODE Classification

(ODEtools/info) missing specification of intermediate function

Book solution method
TO DO

Mathematica
cpu = 1.21559 (sec), leaf count = 97

{{y(x)cos(x)(1xsin(K[1])(af(K[1])43f(K[1])3f(K[1])2)f(K[1])dK[1])+sin(x)(1xcos(K[2])(af(K[2])43f(K[2])3f(K[2])2)f(K[2])dK[2])+c2sin(x)+c1cos(x)}}

Maple
cpu = 0.129 (sec), leaf count = 76

{y(x)=sin(x)_C2+cos(x)_C1cos(x)((f(x))4a3(f(x))23ddxf(x))f(x)dxsin(x)+sin(x)((f(x))4a3(f(x))23ddxf(x))f(x)dxcos(x)} Mathematica raw input

DSolve[f[x]^2*y''[x] == 3*f[x]^3 - a*f[x]^5 - f[x]^2*y[x] + 3*f[x]*f'[x],y[x],x]

Mathematica raw output

{{y[x] -> C[1]*Cos[x] + Cos[x]*Integrate[(Sin[K[1]]*(-3*f[K[1]]^2 + a*f[K[1]]^4 
- 3*Derivative[1][f][K[1]]))/f[K[1]], {K[1], 1, x}] + C[2]*Sin[x] + Integrate[-(
(Cos[K[2]]*(-3*f[K[2]]^2 + a*f[K[2]]^4 - 3*Derivative[1][f][K[2]]))/f[K[2]]), {K
[2], 1, x}]*Sin[x]}}

Maple raw input

dsolve(f(x)^2*diff(diff(y(x),x),x) = 3*f(x)^3+3*f(x)*diff(f(x),x)-f(x)^2*y(x)-a*f(x)^5, y(x),'implicit')

Maple raw output

y(x) = sin(x)*_C2+cos(x)*_C1-Int(cos(x)/f(x)*(f(x)^4*a-3*f(x)^2-3*diff(f(x),x)),
x)*sin(x)+Int(sin(x)/f(x)*(f(x)^4*a-3*f(x)^2-3*diff(f(x),x)),x)*cos(x)