[[_2nd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 2.17783 (sec), leaf count = 264
Maple ✓
cpu = 0.173 (sec), leaf count = 85
DSolve[y[x]*y''[x] == b*y[x]^3 + a*y'[x]^2,y[x],x]
Mathematica raw output
{{y[x] -> InverseFunction[-((Sqrt[-3 + 2*a]*Hypergeometric2F1[1/2, (-1 + a)/(-3
+ 2*a), 1 + (-1 + a)/(-3 + 2*a), (2*b*#1^(3 - 2*a))/((-3 + 2*a)*C[1])]*#1*Sqrt[1
- (2*b*#1^(3 - 2*a))/((-3 + 2*a)*C[1])])/((-1 + a)*Sqrt[-2*b*#1^3 + (-3 + 2*a)*
C[1]*#1^(2*a)])) & ][x + C[2]]}, {y[x] -> InverseFunction[(Sqrt[-3 + 2*a]*Hyperg
eometric2F1[1/2, (-1 + a)/(-3 + 2*a), 1 + (-1 + a)/(-3 + 2*a), (2*b*#1^(3 - 2*a)
)/((-3 + 2*a)*C[1])]*#1*Sqrt[1 - (2*b*#1^(3 - 2*a))/((-3 + 2*a)*C[1])])/((-1 + a
)*Sqrt[-2*b*#1^3 + (-3 + 2*a)*C[1]*#1^(2*a)]) & ][x + C[2]]}}
Maple raw input
dsolve(y(x)*diff(diff(y(x),x),x) = a*diff(y(x),x)^2+b*y(x)^3, y(x),'implicit')
Maple raw output
Intat((2*a-3)/((2*a-3)*(-2*b*_a^3+_C1*_a^(2*a)))^(1/2),_a = y(x))-x-_C2 = 0, Int
at((-2*a+3)/((2*a-3)*(-2*b*_a^3+_C1*_a^(2*a)))^(1/2),_a = y(x))-x-_C2 = 0