4.39.30 \(y(x) y''(x)+y'(x)^3=0\)

ODE
\[ y(x) y''(x)+y'(x)^3=0 \] ODE Classification

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

Book solution method
TO DO

Mathematica
cpu = 0.0591286 (sec), leaf count = 26

\[\left \{\left \{y(x)\to \frac {c_2+x}{W\left (e^{-c_1-1} \left (c_2+x\right )\right )}\right \}\right \}\]

Maple
cpu = 0.197 (sec), leaf count = 26

\[ \left \{ y \left ( x \right ) \ln \left ( y \left ( x \right ) \right ) + \left ( {\it \_C1}-1 \right ) y \left ( x \right ) -x-{\it \_C2}=0,y \left ( x \right ) ={\it \_C1} \right \} \] Mathematica raw input

DSolve[y'[x]^3 + y[x]*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (x + C[2])/ProductLog[E^(-1 - C[1])*(x + C[2])]}}

Maple raw input

dsolve(y(x)*diff(diff(y(x),x),x)+diff(y(x),x)^3 = 0, y(x),'implicit')

Maple raw output

y(x) = _C1, y(x)*ln(y(x))+(_C1-1)*y(x)-x-_C2 = 0