4.40.21 \(x y(x) y''(x)=x y'(x)^2-y(x) y'(x)\)

ODE
\[ x y(x) y''(x)=x y'(x)^2-y(x) y'(x) \] ODE Classification

[_Liouville, [_Painleve, `3rd`], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

Book solution method
TO DO

Mathematica
cpu = 0.0325922 (sec), leaf count = 12

\[\left \{\left \{y(x)\to c_2 x^{c_1}\right \}\right \}\]

Maple
cpu = 0.015 (sec), leaf count = 15

\[ \left \{ \ln \left ( y \left ( x \right ) \right ) -{\it \_C1}\,\ln \left ( x \right ) -{\it \_C2}=0 \right \} \] Mathematica raw input

DSolve[x*y[x]*y''[x] == -(y[x]*y'[x]) + x*y'[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> x^C[1]*C[2]}}

Maple raw input

dsolve(x*y(x)*diff(diff(y(x),x),x) = x*diff(y(x),x)^2-y(x)*diff(y(x),x), y(x),'implicit')

Maple raw output

ln(y(x))-_C1*ln(x)-_C2 = 0