4.41.40 y(x)(a+2bx+cx2+y(x)2)2+Ay(x)=0

ODE
y(x)(a+2bx+cx2+y(x)2)2+Ay(x)=0 ODE Classification

[NONE]

Book solution method
TO DO

Mathematica
cpu = 44.8224 (sec), leaf count = 0 , could not solve

DSolve[A*y[x] + (a + 2*b*x + c*x^2 + y[x]^2)^2*Derivative[2][y][x] == 0, y[x], x]

Maple
cpu = 1.051 (sec), leaf count = 334

{1(carctan((cx+b)1acb2)+y(x)1cx2+2bx+ac(ac+b2)_f4+(_C1c2ac+b2)_f2+_C1c2+A(_f2+1)(_C1(_f2+1)c2a_f2(_f2+1)c+_f4b2+_f2b2+A)d_facb2_C2acb2)1acb2=0,1(y(x)1cx2+2bx+ac(ac+b2)_f4+(_C1c2ac+b2)_f2+_C1c2+A(_f2+1)(_C1(_f2+1)c2a_f2(_f2+1)c+_f4b2+_f2b2+A)d_facb2+_C2acb2carctan((cx+b)1acb2))1acb2=0} Mathematica raw input

DSolve[A*y[x] + (a + 2*b*x + c*x^2 + y[x]^2)^2*y''[x] == 0,y[x],x]

Mathematica raw output

DSolve[A*y[x] + (a + 2*b*x + c*x^2 + y[x]^2)^2*Derivative[2][y][x] == 0, y[x], x
]

Maple raw input

dsolve((a+2*b*x+c*x^2+y(x)^2)^2*diff(diff(y(x),x),x)+A*y(x) = 0, y(x),'implicit')

Maple raw output

-(Intat(((_f^2+1)*(_C1*(_f^2+1)*c^2-a*_f^2*(_f^2+1)*c+_f^4*b^2+_f^2*b^2+A))^(1/2
)*c/((-a*c+b^2)*_f^4+(_C1*c^2-a*c+b^2)*_f^2+_C1*c^2+A),_f = y(x)/(c*x^2+2*b*x+a)
^(1/2))*(a*c-b^2)^(1/2)+_C2*(a*c-b^2)^(1/2)-c*arctan((c*x+b)/(a*c-b^2)^(1/2)))/(
a*c-b^2)^(1/2) = 0, (c*arctan((c*x+b)/(a*c-b^2)^(1/2))+Intat(((_f^2+1)*(_C1*(_f^
2+1)*c^2-a*_f^2*(_f^2+1)*c+_f^4*b^2+_f^2*b^2+A))^(1/2)*c/((-a*c+b^2)*_f^4+(_C1*c
^2-a*c+b^2)*_f^2+_C1*c^2+A),_f = y(x)/(c*x^2+2*b*x+a)^(1/2))*(a*c-b^2)^(1/2)-_C2
*(a*c-b^2)^(1/2))/(a*c-b^2)^(1/2) = 0