[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✗
cpu = 0.388484 (sec), leaf count = 0 , could not solve
DSolve[Sqrt[y[x]]*Derivative[2][y][x] == 2*(a + b*x), y[x], x]
Maple ✓
cpu = 7.823 (sec), leaf count = 257
DSolve[Sqrt[y[x]]*y''[x] == 2*(a + b*x),y[x],x]
Mathematica raw output
DSolve[Sqrt[y[x]]*Derivative[2][y][x] == 2*(a + b*x), y[x], x]
Maple raw input
dsolve(diff(diff(y(x),x),x)*y(x)^(1/2) = 2*b*x+2*a, y(x),'implicit')
Maple raw output
ln(b*x+a)-Intat(-b^2*3^(1/2)*(3^(1/2)*((-(a+b)/(_g*(a+b)^2)^(1/2)/_g/b^2)^(1/3)-
2)+3*(-(a+b)/(_g*(a+b)^2)^(1/2)/_g/b^2)^(1/3)*tan(RootOf(12*b^2*Int((-(a+b)/(_g*
(a+b)^2)^(1/2)/_g/b^2)^(2/3)*(_g*(a+b)^2)^(1/2)/((_g*(a+b)^2)^(1/2)*_g*b^2-a-b),
_g)-8*_Z*3^(1/2)-ln(_g*(a+b)^2)+2*ln((tan(_Z)^2+1)^2*(_g*(a+b)^2)^(1/2)/(tan(_Z)
^4+4*3^(1/2)*tan(_Z)^3+18*tan(_Z)^2+12*tan(_Z)*3^(1/2)+9))+24*_C1)))*(_g*(a+b)^2
)^(1/2)/(-12*(_g*(a+b)^2)^(1/2)*_g*b^2+12*a+12*b),_g = y(x)/(b*x+a)^2)-_C2 = 0