4.41.43 y(x)y(x)=2(a+bx)

ODE
y(x)y(x)=2(a+bx) ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.388484 (sec), leaf count = 0 , could not solve

DSolve[Sqrt[y[x]]*Derivative[2][y][x] == 2*(a + b*x), y[x], x]

Maple
cpu = 7.823 (sec), leaf count = 257

{ln(bx+a)y(x)(bx+a)2b23(3(a+b_gb21_g(a+b)232)+3a+b_g(a+b)2_gb23tan(RootOf(12b2_g(a+b)2_g(a+b)2_gb2ab(a+b_g(a+b)2_gb2)2/3d_g8_Z3ln(_g(a+b)2)+2ln(((tan(_Z))2+1)2_g(a+b)2(tan(_Z))4+43(tan(_Z))3+18(tan(_Z))2+12tan(_Z)3+9)+24_C1)))_g(a+b)2(12_g(a+b)2_gb2+12a+12b)1d_g_C2=0} Mathematica raw input

DSolve[Sqrt[y[x]]*y''[x] == 2*(a + b*x),y[x],x]

Mathematica raw output

DSolve[Sqrt[y[x]]*Derivative[2][y][x] == 2*(a + b*x), y[x], x]

Maple raw input

dsolve(diff(diff(y(x),x),x)*y(x)^(1/2) = 2*b*x+2*a, y(x),'implicit')

Maple raw output

ln(b*x+a)-Intat(-b^2*3^(1/2)*(3^(1/2)*((-(a+b)/(_g*(a+b)^2)^(1/2)/_g/b^2)^(1/3)-
2)+3*(-(a+b)/(_g*(a+b)^2)^(1/2)/_g/b^2)^(1/3)*tan(RootOf(12*b^2*Int((-(a+b)/(_g*
(a+b)^2)^(1/2)/_g/b^2)^(2/3)*(_g*(a+b)^2)^(1/2)/((_g*(a+b)^2)^(1/2)*_g*b^2-a-b),
_g)-8*_Z*3^(1/2)-ln(_g*(a+b)^2)+2*ln((tan(_Z)^2+1)^2*(_g*(a+b)^2)^(1/2)/(tan(_Z)
^4+4*3^(1/2)*tan(_Z)^3+18*tan(_Z)^2+12*tan(_Z)*3^(1/2)+9))+24*_C1)))*(_g*(a+b)^2
)^(1/2)/(-12*(_g*(a+b)^2)^(1/2)*_g*b^2+12*a+12*b),_g = y(x)/(b*x+a)^2)-_C2 = 0