4.42.11 y(x)f(y(x))+g(y(x))y(x)+h(x)=0

ODE
y(x)f(y(x))+g(y(x))y(x)+h(x)=0 ODE Classification

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

Book solution method
TO DO

Mathematica
cpu = 0.047685 (sec), leaf count = 0 , could not solve

DSolve[h[x] + g[y[x]]*Derivative[1][y][x] + f[Derivative[1][y][x]]*Derivative[2][y][x] == 0, y[x], x]

Maple
cpu = 6.507 (sec), leaf count = 51

{y(x)=ODESolStruc(_f(_b),[{_f(_b)g(_a)d_a+dd_b_f(_b)f(_a)d_a+h(_b)d_b+_C1=0},{_b=x,_f(_b)=y(x)},{x=_b,y(x)=_f(_b)}])} Mathematica raw input

DSolve[h[x] + g[y[x]]*y'[x] + f[y'[x]]*y''[x] == 0,y[x],x]

Mathematica raw output

DSolve[h[x] + g[y[x]]*Derivative[1][y][x] + f[Derivative[1][y][x]]*Derivative[2]
[y][x] == 0, y[x], x]

Maple raw input

dsolve(f(diff(y(x),x))*diff(diff(y(x),x),x)+g(y(x))*diff(y(x),x)+h(x) = 0, y(x),'implicit')

Maple raw output

y(x) = ODESolStruc(_f(_b),[{Intat(g(_a),_a = _f(_b))+Intat(f(_a),_a = diff(_f(_b
),_b))+Int(h(_b),_b)+_C1 = 0}, {_b = x, _f(_b) = y(x)}, {x = _b, y(x) = _f(_b)}]
)