4.42.13 y(x)2=a+by(x)2

ODE
y(x)2=a+by(x)2 ODE Classification

[[_2nd_order, _missing_x]]

Book solution method
TO DO

Mathematica
cpu = 0.155287 (sec), leaf count = 101

{{y(x)c2eb(c1+x)(abe2bx+e2bc1)2b3/2},{y(x)eb(c1+x)(ab+e2b(c1+x))2b3/2+c2}}

Maple
cpu = 0.293 (sec), leaf count = 92

{y(x)=xbab+_C1,y(x)=xbab+_C1,y(x)=_C1+_C2ebx+a4b2_C2ebx,y(x)=_C1+a4b2_C2ebx+_C2ebx} Mathematica raw input

DSolve[y''[x]^2 == a + b*y'[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> -(a*b*E^(2*Sqrt[b]*x) + E^(2*Sqrt[b]*C[1]))/(2*b^(3/2)*E^(Sqrt[b]*(x +
 C[1]))) + C[2]}, {y[x] -> (a*b + E^(2*Sqrt[b]*(x + C[1])))/(2*b^(3/2)*E^(Sqrt[b
]*(x + C[1]))) + C[2]}}

Maple raw input

dsolve(diff(diff(y(x),x),x)^2 = a+b*diff(y(x),x)^2, y(x),'implicit')

Maple raw output

y(x) = -1/b*(-a*b)^(1/2)*x+_C1, y(x) = 1/b*(-a*b)^(1/2)*x+_C1, y(x) = _C1+_C2*ex
p(b^(1/2)*x)+1/4*a/b^2/_C2*exp(-b^(1/2)*x), y(x) = _C1+1/4*a/b^2/_C2*exp(b^(1/2)
*x)+_C2*exp(-b^(1/2)*x)