4.42.15 a2y(x)2=(y(x)2+1)3

ODE
a2y(x)2=(y(x)2+1)3 ODE Classification

[[_2nd_order, _missing_x]]

Book solution method
TO DO

Mathematica
cpu = 0.132494 (sec), leaf count = 141

{{y(x)c2ia2(c121)2ac1x+x2},{y(x)c2+ia2(c121)2ac1x+x2},{y(x)c2ia2(c121)+2ac1x+x2},{y(x)c2+ia2(c121)+2ac1x+x2}}

Maple
cpu = 0.191 (sec), leaf count = 78

{y(x)=(x+_C1+a)(x_C1+a)1_C122_C1x+a2x2+_C2,y(x)=(x+_C1+a)(x_C1+a)1_C122_C1x+a2x2+_C2} Mathematica raw input

DSolve[a^2*y''[x]^2 == (1 + y'[x]^2)^3,y[x],x]

Mathematica raw output

{{y[x] -> (-I)*Sqrt[x^2 - 2*a*x*C[1] + a^2*(-1 + C[1]^2)] + C[2]}, {y[x] -> I*Sq
rt[x^2 - 2*a*x*C[1] + a^2*(-1 + C[1]^2)] + C[2]}, {y[x] -> (-I)*Sqrt[x^2 + 2*a*x
*C[1] + a^2*(-1 + C[1]^2)] + C[2]}, {y[x] -> I*Sqrt[x^2 + 2*a*x*C[1] + a^2*(-1 +
 C[1]^2)] + C[2]}}

Maple raw input

dsolve(a^2*diff(diff(y(x),x),x)^2 = (1+diff(y(x),x)^2)^3, y(x),'implicit')

Maple raw output

y(x) = -(x+_C1+a)*(-x-_C1+a)/(-_C1^2-2*_C1*x+a^2-x^2)^(1/2)+_C2, y(x) = (x+_C1+a
)*(-x-_C1+a)/(-_C1^2-2*_C1*x+a^2-x^2)^(1/2)+_C2