4.42.33 f(y(x),y(x))=0

ODE
f(y(x),y(x))=0 ODE Classification

[[_2nd_order, _missing_x]]

Book solution method
TO DO

Mathematica
cpu = 1.11781 (sec), leaf count = 37

{{y(x)1xInverseFunction[1#11InverseFunction[f,2,2][K[1],0]dK[1]&][K[2]+c1]dK[2]+c2}}

Maple
cpu = 0.091 (sec), leaf count = 24

{y(x)=RootOf(x_Z(RootOf(f(_f,_Z)))1d_f+_C1)dx+_C2} Mathematica raw input

DSolve[f[y'[x], y''[x]] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[2] + Integrate[InverseFunction[Integrate[InverseFunction[f, 2, 2][K[
1], 0]^(-1), {K[1], 1, #1}] & ][C[1] + K[2]], {K[2], 1, x}]}}

Maple raw input

dsolve(f(diff(y(x),x),diff(diff(y(x),x),x)) = 0, y(x),'implicit')

Maple raw output

y(x) = Int(RootOf(x-Intat(1/RootOf(f(_f,_Z)),_f = _Z)+_C1),x)+_C2