4.42.35 f(y(x),y(x),y(x))=0

ODE
f(y(x),y(x),y(x))=0 ODE Classification

[[_2nd_order, _missing_x]]

Book solution method
TO DO

Mathematica
cpu = 6.29472 (sec), leaf count = 0 , could not solve

DSolve[f[y[x], Derivative[1][y][x], Derivative[2][y][x]] == 0, y[x], x]

Maple
cpu = 0.152 (sec), leaf count = 53

{y(x)=ODESolStruc(_a,[{(dd_a_b(_a))_b(_a)RootOf(f(_a,_b(_a),_Z))=0},{_a=y(x),_b(_a)=ddxy(x)},{x=(_b(_a))1d_a+_C1,y(x)=_a}])} Mathematica raw input

DSolve[f[y[x], y'[x], y''[x]] == 0,y[x],x]

Mathematica raw output

DSolve[f[y[x], Derivative[1][y][x], Derivative[2][y][x]] == 0, y[x], x]

Maple raw input

dsolve(f(y(x),diff(y(x),x),diff(diff(y(x),x),x)) = 0, y(x),'implicit')

Maple raw output

y(x) = ODESolStruc(_a,[{diff(_b(_a),_a)*_b(_a)-RootOf(f(_a,_b(_a),_Z)) = 0}, {_a
 = y(x), _b(_a) = diff(y(x),x)}, {x = Int(1/_b(_a),_a)+_C1, y(x) = _a}])