4.42.38 \(y'''(x)+\sin (x)=0\)

ODE
\[ y'''(x)+\sin (x)=0 \] ODE Classification

[[_3rd_order, _quadrature]]

Book solution method
TO DO

Mathematica
cpu = 0.0150115 (sec), leaf count = 21

\[\left \{\left \{y(x)\to x \left (c_3 x+c_2\right )+c_1-\cos (x)\right \}\right \}\]

Maple
cpu = 0.008 (sec), leaf count = 19

\[ \left \{ y \left ( x \right ) =-\cos \left ( x \right ) +{\frac {{\it \_C1}\,{x}^{2}}{2}}+{\it \_C2}\,x+{\it \_C3} \right \} \] Mathematica raw input

DSolve[Sin[x] + y'''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[1] + x*(C[2] + x*C[3]) - Cos[x]}}

Maple raw input

dsolve(diff(diff(diff(y(x),x),x),x)+sin(x) = 0, y(x),'implicit')

Maple raw output

y(x) = -cos(x)+1/2*_C1*x^2+_C2*x+_C3