ODE
\[ y'''(x)-2 y'(x)+4 y(x)=0 \] ODE Classification
[[_3rd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00839355 (sec), leaf count = 30
\[\left \{\left \{y(x)\to c_3 e^{-2 x}+c_1 e^x \sin (x)+c_2 e^x \cos (x)\right \}\right \}\]
Maple ✓
cpu = 0.007 (sec), leaf count = 23
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{-2\,x}}+{\it \_C2}\,{{\rm e}^{x}}\sin \left ( x \right ) +{\it \_C3}\,{{\rm e}^{x}}\cos \left ( x \right ) \right \} \] Mathematica raw input
DSolve[4*y[x] - 2*y'[x] + y'''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> C[3]/E^(2*x) + E^x*C[2]*Cos[x] + E^x*C[1]*Sin[x]}}
Maple raw input
dsolve(diff(diff(diff(y(x),x),x),x)-2*diff(y(x),x)+4*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1*exp(-2*x)+_C2*exp(x)*sin(x)+_C3*exp(x)*cos(x)