ODE
\[ y'''(x)-7 y'(x)+6 y(x)=0 \] ODE Classification
[[_3rd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00898009 (sec), leaf count = 28
\[\left \{\left \{y(x)\to c_1 e^{-3 x}+c_2 e^x+c_3 e^{2 x}\right \}\right \}\]
Maple ✓
cpu = 0.01 (sec), leaf count = 21
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{2\,x}}+{\it \_C2}\,{{\rm e}^{x}}+{\it \_C3}\,{{\rm e}^{-3\,x}} \right \} \] Mathematica raw input
DSolve[6*y[x] - 7*y'[x] + y'''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> C[1]/E^(3*x) + E^x*C[2] + E^(2*x)*C[3]}}
Maple raw input
dsolve(diff(diff(diff(y(x),x),x),x)-7*diff(y(x),x)+6*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1*exp(2*x)+_C2*exp(x)+_C3*exp(-3*x)