ODE
\[ y'''(x)-3 y''(x)+4 y'(x)-2 y(x)=0 \] ODE Classification
[[_3rd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0133649 (sec), leaf count = 22
\[\left \{\left \{y(x)\to e^x \left (c_1 \sin (x)+c_2 \cos (x)+c_3\right )\right \}\right \}\]
Maple ✓
cpu = 0.006 (sec), leaf count = 17
\[ \left \{ y \left ( x \right ) ={{\rm e}^{x}} \left ( \sin \left ( x \right ) {\it \_C2}+\cos \left ( x \right ) {\it \_C3}+{\it \_C1} \right ) \right \} \] Mathematica raw input
DSolve[-2*y[x] + 4*y'[x] - 3*y''[x] + y'''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> E^x*(C[3] + C[2]*Cos[x] + C[1]*Sin[x])}}
Maple raw input
dsolve(diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+4*diff(y(x),x)-2*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = exp(x)*(sin(x)*_C2+cos(x)*_C3+_C1)