4.44.6 \(x y'''(x)=2\)

ODE
\[ x y'''(x)=2 \] ODE Classification

[[_3rd_order, _quadrature]]

Book solution method
TO DO

Mathematica
cpu = 0.00948951 (sec), leaf count = 28

\[\left \{\left \{y(x)\to \left (c_3-\frac {3}{2}\right ) x^2+c_2 x+c_1+x^2 \log (x)\right \}\right \}\]

Maple
cpu = 0.008 (sec), leaf count = 23

\[ \left \{ y \left ( x \right ) ={x}^{2}\ln \left ( x \right ) +{\frac { \left ( {\it \_C1}-3 \right ) {x}^{2}}{2}}+{\it \_C2}\,x+{\it \_C3} \right \} \] Mathematica raw input

DSolve[x*y'''[x] == 2,y[x],x]

Mathematica raw output

{{y[x] -> C[1] + x*C[2] + x^2*(-3/2 + C[3]) + x^2*Log[x]}}

Maple raw input

dsolve(x*diff(diff(diff(y(x),x),x),x) = 2, y(x),'implicit')

Maple raw output

y(x) = x^2*ln(x)+1/2*(_C1-3)*x^2+_C2*x+_C3