4.44.17 \(x^2 y'''(x)+5 x y''(x)+4 y'(x)=\log (x)\)

ODE
\[ x^2 y'''(x)+5 x y''(x)+4 y'(x)=\log (x) \] ODE Classification

[[_3rd_order, _missing_y]]

Book solution method
TO DO

Mathematica
cpu = 0.0332715 (sec), leaf count = 43

\[\left \{\left \{y(x)\to \frac {\left (x^2-8 c_2\right ) \log (x)-2 \left (-2 c_3 x+2 c_1+4 c_2+x^2\right )}{4 x}\right \}\right \}\]

Maple
cpu = 0.013 (sec), leaf count = 32

\[ \left \{ y \left ( x \right ) ={\frac { \left ( {x}^{2}+4\,{\it \_C2} \right ) \ln \left ( x \right ) -2\,{x}^{2}+4\,{\it \_C1}\,x+4\,{\it \_C3}}{4\,x}} \right \} \] Mathematica raw input

DSolve[4*y'[x] + 5*x*y''[x] + x^2*y'''[x] == Log[x],y[x],x]

Mathematica raw output

{{y[x] -> (-2*(x^2 + 2*C[1] + 4*C[2] - 2*x*C[3]) + (x^2 - 8*C[2])*Log[x])/(4*x)}
}

Maple raw input

dsolve(x^2*diff(diff(diff(y(x),x),x),x)+5*x*diff(diff(y(x),x),x)+4*diff(y(x),x) = ln(x), y(x),'implicit')

Maple raw output

y(x) = 1/4*((x^2+4*_C2)*ln(x)-2*x^2+4*_C1*x+4*_C3)/x