4.44.20 \(x^2 y'''(x)-2 (n+1) x y''(x)+6 n y'(x)=0\)

ODE
\[ x^2 y'''(x)-2 (n+1) x y''(x)+6 n y'(x)=0 \] ODE Classification

[[_3rd_order, _missing_y]]

Book solution method
TO DO

Mathematica
cpu = 0.0433888 (sec), leaf count = 34

\[\left \{\left \{y(x)\to \frac {c_1 x^{2 n+1}}{2 n+1}+\frac {c_2 x^4}{4}+c_3\right \}\right \}\]

Maple
cpu = 0.009 (sec), leaf count = 20

\[ \left \{ y \left ( x \right ) ={\it \_C1}+{\it \_C2}\,{x}^{4}+{\it \_C3}\,{x}^{1+2\,n} \right \} \] Mathematica raw input

DSolve[6*n*y'[x] - 2*(1 + n)*x*y''[x] + x^2*y'''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (x^(1 + 2*n)*C[1])/(1 + 2*n) + (x^4*C[2])/4 + C[3]}}

Maple raw input

dsolve(x^2*diff(diff(diff(y(x),x),x),x)-2*(n+1)*x*diff(diff(y(x),x),x)+6*n*diff(y(x),x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1+_C2*x^4+_C3*x^(1+2*n)