4.44.31 \(x^3 y'''(x)-x^2 y''(x)+2 x y'(x)-2 y(x)=0\)

ODE
\[ x^3 y'''(x)-x^2 y''(x)+2 x y'(x)-2 y(x)=0 \] ODE Classification

[[_3rd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0107365 (sec), leaf count = 19

\[\left \{\left \{y(x)\to x \left (c_3 x+c_2 \log (x)+c_1\right )\right \}\right \}\]

Maple
cpu = 0.008 (sec), leaf count = 15

\[ \left \{ y \left ( x \right ) =x \left ( \ln \left ( x \right ) {\it \_C3}+{\it \_C1}\,x+{\it \_C2} \right ) \right \} \] Mathematica raw input

DSolve[-2*y[x] + 2*x*y'[x] - x^2*y''[x] + x^3*y'''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> x*(C[1] + x*C[3] + C[2]*Log[x])}}

Maple raw input

dsolve(x^3*diff(diff(diff(y(x),x),x),x)-x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-2*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = x*(ln(x)*_C3+_C1*x+_C2)