4.44.44 x3y(x)+x2log(x)y(x)+2xy(x)y(x)=2x3

ODE
x3y(x)+x2log(x)y(x)+2xy(x)y(x)=2x3 ODE Classification

[[_3rd_order, _linear, _nonhomogeneous]]

Book solution method
TO DO

Mathematica
cpu = 0.0143274 (sec), leaf count = 0 , could not solve

DSolve[-y[x] + 2*x*Derivative[1][y][x] + x^2*Log[x]*Derivative[2][y][x] + x^3*Derivative[3][y][x] == 2*x^3, y[x], x]

Maple
cpu = 0.365 (sec), leaf count = 141

{y(x)=x23e(ln(x))22(3ix2e1/2(ln(x))2(xErf(i/22(ln(x)2))e1/2Erf(i/22(1+ln(x)))e2)πe1/2(ln(x))2e5/2dx+(3i2x22πe12+3_C2)Erf(i22(1+ln(x)))+(ix32πe2+3_C3)Erf(i22(ln(x)2))+3_C1)} Mathematica raw input

DSolve[-y[x] + 2*x*y'[x] + x^2*Log[x]*y''[x] + x^3*y'''[x] == 2*x^3,y[x],x]

Mathematica raw output

DSolve[-y[x] + 2*x*Derivative[1][y][x] + x^2*Log[x]*Derivative[2][y][x] + x^3*De
rivative[3][y][x] == 2*x^3, y[x], x]

Maple raw input

dsolve(x^3*diff(diff(diff(y(x),x),x),x)+x^2*diff(diff(y(x),x),x)*ln(x)+2*x*diff(y(x),x)-y(x) = 2*x^3, y(x),'implicit')

Maple raw output

y(x) = 1/3*exp(-1/2*ln(x)^2)*(-3*Int(I*x*2^(1/2)*exp(1/2*ln(x)^2)*(x*erf(1/2*I*2
^(1/2)*(ln(x)-2))*exp(1/2)-erf(1/2*I*2^(1/2)*(-1+ln(x)))*exp(2))*Pi^(1/2)*exp(-1
/2*ln(x)^2)*exp(-5/2),x)+(-3/2*I*x^2*2^(1/2)*Pi^(1/2)*exp(-1/2)+3*_C2)*erf(1/2*I
*2^(1/2)*(-1+ln(x)))+(I*x^3*2^(1/2)*Pi^(1/2)*exp(-2)+3*_C3)*erf(1/2*I*2^(1/2)*(l
n(x)-2))+3*_C1)*x^2