4.44.48 \(x \left (x^2-2 x+2\right ) y'''(x)+\left (-x^3+3 x^2-6 x+6\right ) y''(x)=0\)

ODE
\[ x \left (x^2-2 x+2\right ) y'''(x)+\left (-x^3+3 x^2-6 x+6\right ) y''(x)=0 \] ODE Classification

[[_3rd_order, _missing_y]]

Book solution method
TO DO

Mathematica
cpu = 0.0310918 (sec), leaf count = 21

\[\left \{\left \{y(x)\to \frac {c_1 e^x}{x}+c_3 x+c_2\right \}\right \}\]

Maple
cpu = 0.028 (sec), leaf count = 16

\[ \left \{ y \left ( x \right ) ={\frac {{{\rm e}^{x}}{\it \_C1}}{x}}+{\it \_C2}\,x+{\it \_C3} \right \} \] Mathematica raw input

DSolve[(6 - 6*x + 3*x^2 - x^3)*y''[x] + x*(2 - 2*x + x^2)*y'''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (E^x*C[1])/x + C[2] + x*C[3]}}

Maple raw input

dsolve(x*(x^2-2*x+2)*diff(diff(diff(y(x),x),x),x)+(-x^3+3*x^2-6*x+6)*diff(diff(y(x),x),x) = 0, y(x),'implicit')

Maple raw output

y(x) = exp(x)/x*_C1+_C2*x+_C3