4.45.14 y(x)=y(x)+cos(x)

ODE
y(x)=y(x)+cos(x) ODE Classification

[[_high_order, _linear, _nonhomogeneous]]

Book solution method
TO DO

Mathematica
cpu = 0.0412753 (sec), leaf count = 40

{{y(x)c1ex+c3ex+(c4x4)sin(x)+(c212)cos(x)}}

Maple
cpu = 0.063 (sec), leaf count = 35

{y(x)=_C4ex+(4_C11)cos(x)4+(x+4_C3)sin(x)4+_C2ex} Mathematica raw input

DSolve[y''''[x] == Cos[x] + y[x],y[x],x]

Mathematica raw output

{{y[x] -> E^x*C[1] + C[3]/E^x + (-1/2 + C[2])*Cos[x] + (-x/4 + C[4])*Sin[x]}}

Maple raw input

dsolve(diff(diff(diff(diff(y(x),x),x),x),x) = y(x)+cos(x), y(x),'implicit')

Maple raw output

y(x) = _C4*exp(-x)+1/4*(4*_C1-1)*cos(x)+1/4*(-x+4*_C3)*sin(x)+_C2*exp(x)