4.45.17 y(x)=a4y(x)+x3

ODE
y(x)=a4y(x)+x3 ODE Classification

[[_high_order, _linear, _nonhomogeneous]]

Book solution method
TO DO

Mathematica
cpu = 0.00844123 (sec), leaf count = 45

{{y(x)x3a4+c2eax+c4eax+c3sin(ax)+c1cos(ax)}}

Maple
cpu = 0.026 (sec), leaf count = 38

{y(x)=x3a4+_C1cos(ax)+_C2eax+_C3sin(ax)+_C4eax} Mathematica raw input

DSolve[y''''[x] == x^3 + a^4*y[x],y[x],x]

Mathematica raw output

{{y[x] -> -(x^3/a^4) + C[2]/E^(a*x) + E^(a*x)*C[4] + C[1]*Cos[a*x] + C[3]*Sin[a*
x]}}

Maple raw input

dsolve(diff(diff(diff(diff(y(x),x),x),x),x) = x^3+a^4*y(x), y(x),'implicit')

Maple raw output

y(x) = -1/a^4*x^3+_C1*cos(a*x)+_C2*exp(a*x)+_C3*sin(a*x)+_C4*exp(-a*x)