[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
Book solution method
Change of Variable, new dependent variable
Mathematica ✓
cpu = 4.29333 (sec), leaf count = 39
Maple ✓
cpu = 0.272 (sec), leaf count = 32
DSolve[n*y[x] + x*y'[x] == f[x]*g[x^n*y[x]],y[x],x]
Mathematica raw output
Solve[C[1] + Integrate[f[K[2]]*K[2]^(-1 + n), {K[2], 1, x}] == Integrate[g[K[1]]
^(-1), {K[1], 1, x^n*y[x]}], y[x]]
Maple raw input
dsolve(x*diff(y(x),x)+n*y(x) = f(x)*g(x^n*y(x)), y(x),'implicit')
Maple raw output
Int(f(x)*x^(n-1),x)-Intat(1/g(_a),_a = x^n*y(x))-_C1 = 0