4.45.31 y(x)+a4y(x)+2a2y(x)=cosh(ax)

ODE
y(x)+a4y(x)+2a2y(x)=cosh(ax) ODE Classification

[[_high_order, _linear, _nonhomogeneous]]

Book solution method
TO DO

Mathematica
cpu = 0.251201 (sec), leaf count = 47

{{y(x)4a4((c4x+c3)sin(ax)+(c2x+c1)cos(ax))+cosh(ax)4a4}}

Maple
cpu = 0.496 (sec), leaf count = 51

{y(x)=eax+(8_C3x+8_C1)a4cos(ax)+(8_C4x+8_C2)a4sin(ax)+eax8a4} Mathematica raw input

DSolve[a^4*y[x] + 2*a^2*y''[x] + y''''[x] == Cosh[a*x],y[x],x]

Mathematica raw output

{{y[x] -> (Cosh[a*x] + 4*a^4*((C[1] + x*C[2])*Cos[a*x] + (C[3] + x*C[4])*Sin[a*x
]))/(4*a^4)}}

Maple raw input

dsolve(diff(diff(diff(diff(y(x),x),x),x),x)+2*a^2*diff(diff(y(x),x),x)+a^4*y(x) = cosh(a*x), y(x),'implicit')

Maple raw output

y(x) = 1/8*(exp(-a*x)+(8*_C3*x+8*_C1)*a^4*cos(a*x)+(8*_C4*x+8*_C2)*a^4*sin(a*x)+
exp(a*x))/a^4