[[_high_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.721502 (sec), leaf count = 148
Maple ✓
cpu = 0.046 (sec), leaf count = 84
DSolve[a^4*x^4*y[x] + 4*a^3*x^3*y'[x] + 6*a^2*x^2*y''[x] + 4*a*x*y'''[x] + y''''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (6*Sqrt[a]*(C[1] + E^(2*Sqrt[-((-3 + Sqrt[6])*a)]*x)*C[2]) + (Sqrt[18
- 6*Sqrt[6]]*(C[3] + E^((2*a*x)/Sqrt[a - Sqrt[2/3]*a])*C[4]))/E^(((-3 + Sqrt[3]
+ Sqrt[6])*a*x)/Sqrt[-((-3 + Sqrt[6])*a)]))/(6*Sqrt[a]*E^((x*(2*Sqrt[-((-3 + Sqr
t[6])*a)] + a*x))/2))}}
Maple raw input
dsolve(diff(diff(diff(diff(y(x),x),x),x),x)+4*a*x*diff(diff(diff(y(x),x),x),x)+6*a^2*x^2*diff(diff(y(x),x),x)+4*a^3*x^3*diff(y(x),x)+a^4*x^4*y(x) = 0, y(x),'implicit')
Maple raw output
y(x)-exp(-1/2*a*x^2)*(_C1*exp(-(-a*6^(1/2)+3*a)^(1/2)*x)+_C2*exp((-a*6^(1/2)+3*a
)^(1/2)*x)+_C3*exp(-(a*6^(1/2)+3*a)^(1/2)*x)+_C4*exp((a*6^(1/2)+3*a)^(1/2)*x)) =
0