4.46.8 \(x^3 y''''(x)+2 x^2 y'''(x)+a^4 \left (-x^3\right ) y(x)-x y''(x)=0\)

ODE
\[ x^3 y''''(x)+2 x^2 y'''(x)+a^4 \left (-x^3\right ) y(x)-x y''(x)=0 \] ODE Classification

[[_high_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.839093 (sec), leaf count = 310

\[\left \{\left \{y(x)\to c_1 \, _0F_3\left (;\frac {3}{4},\frac {5}{8}-\frac {\sqrt {5}}{8},\frac {5}{8}+\frac {\sqrt {5}}{8};\frac {a^4 x^4}{256}\right )+2^{-3-\sqrt {5}} \left ((-1)^{\frac {1}{8} \left (3-\sqrt {5}\right )} a^{\frac {3}{2}-\frac {\sqrt {5}}{2}} x^{\frac {3}{2}-\frac {\sqrt {5}}{2}} \left (4^{\sqrt {5}} c_3 \, _0F_3\left (;1-\frac {\sqrt {5}}{4},\frac {9}{8}-\frac {\sqrt {5}}{8},\frac {11}{8}-\frac {\sqrt {5}}{8};\frac {a^4 x^4}{256}\right )+(-1)^{\frac {\sqrt {5}}{4}} a^{\sqrt {5}} c_4 x^{\sqrt {5}} \, _0F_3\left (;\frac {9}{8}+\frac {\sqrt {5}}{8},\frac {11}{8}+\frac {\sqrt {5}}{8},1+\frac {\sqrt {5}}{4};\frac {a^4 x^4}{256}\right )\right )+(1+i) 2^{\frac {1}{2}+\sqrt {5}} a c_2 x \, _0F_3\left (;\frac {5}{4},\frac {7}{8}-\frac {\sqrt {5}}{8},\frac {7}{8}+\frac {\sqrt {5}}{8};\frac {a^4 x^4}{256}\right )\right )\right \}\right \}\]

Maple
cpu = 0.215 (sec), leaf count = 148

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\mbox {$_0$F$_3$}(\ ;\,{\frac {3}{4}},{\frac {5}{8}}+{\frac {\sqrt {5}}{8}},{\frac {5}{8}}-{\frac {\sqrt {5}}{8}};\,{\frac {{a}^{4}{x}^{4}}{256}})}+{\it \_C2}\,x{\mbox {$_0$F$_3$}(\ ;\,{\frac {5}{4}},{\frac {7}{8}}+{\frac {\sqrt {5}}{8}},{\frac {7}{8}}-{\frac {\sqrt {5}}{8}};\,{\frac {{a}^{4}{x}^{4}}{256}})}+{\it \_C3}\,{x}^{{\frac {3}{2}}-{\frac {\sqrt {5}}{2}}}{\mbox {$_0$F$_3$}(\ ;\,1-{\frac {\sqrt {5}}{4}},{\frac {9}{8}}-{\frac {\sqrt {5}}{8}},{\frac {11}{8}}-{\frac {\sqrt {5}}{8}};\,{\frac {{a}^{4}{x}^{4}}{256}})}+{\it \_C4}\,{x}^{{\frac {3}{2}}+{\frac {\sqrt {5}}{2}}}{\mbox {$_0$F$_3$}(\ ;\,1+{\frac {\sqrt {5}}{4}},{\frac {9}{8}}+{\frac {\sqrt {5}}{8}},{\frac {11}{8}}+{\frac {\sqrt {5}}{8}};\,{\frac {{a}^{4}{x}^{4}}{256}})} \right \} \] Mathematica raw input

DSolve[-(a^4*x^3*y[x]) - x*y''[x] + 2*x^2*y'''[x] + x^3*y''''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[1]*HypergeometricPFQ[{}, {3/4, 5/8 - Sqrt[5]/8, 5/8 + Sqrt[5]/8}, (a
^4*x^4)/256] + 2^(-3 - Sqrt[5])*((1 + I)*2^(1/2 + Sqrt[5])*a*x*C[2]*Hypergeometr
icPFQ[{}, {5/4, 7/8 - Sqrt[5]/8, 7/8 + Sqrt[5]/8}, (a^4*x^4)/256] + (-1)^((3 - S
qrt[5])/8)*a^(3/2 - Sqrt[5]/2)*x^(3/2 - Sqrt[5]/2)*(4^Sqrt[5]*C[3]*Hypergeometri
cPFQ[{}, {1 - Sqrt[5]/4, 9/8 - Sqrt[5]/8, 11/8 - Sqrt[5]/8}, (a^4*x^4)/256] + (-
1)^(Sqrt[5]/4)*a^Sqrt[5]*x^Sqrt[5]*C[4]*HypergeometricPFQ[{}, {9/8 + Sqrt[5]/8, 
11/8 + Sqrt[5]/8, 1 + Sqrt[5]/4}, (a^4*x^4)/256]))}}

Maple raw input

dsolve(x^3*diff(diff(diff(diff(y(x),x),x),x),x)+2*x^2*diff(diff(diff(y(x),x),x),x)-x*diff(diff(y(x),x),x)-a^4*x^3*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*hypergeom([],[3/4, 5/8+1/8*5^(1/2), 5/8-1/8*5^(1/2)],1/256*a^4*x^4)+_
C2*x*hypergeom([],[5/4, 7/8+1/8*5^(1/2), 7/8-1/8*5^(1/2)],1/256*a^4*x^4)+_C3*x^(
3/2-1/2*5^(1/2))*hypergeom([],[1-1/4*5^(1/2), 9/8-1/8*5^(1/2), 11/8-1/8*5^(1/2)]
,1/256*a^4*x^4)+_C4*x^(3/2+1/2*5^(1/2))*hypergeom([],[1+1/4*5^(1/2), 9/8+1/8*5^(
1/2), 11/8+1/8*5^(1/2)],1/256*a^4*x^4)