[[_high_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0140151 (sec), leaf count = 186
Maple ✓
cpu = 0.018 (sec), leaf count = 51
DSolve[A4*y[x] + A3*x*y'[x] + A2*x^2*y''[x] + A1*x^3*y'''[x] + x^4*y''''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> x^Root[A4 + (-6 + 2*A1 - A2 + A3)*#1 + (11 - 3*A1 + A2)*#1^2 + (-6 + A
1)*#1^3 + #1^4 & , 1]*C[1] + x^Root[A4 + (-6 + 2*A1 - A2 + A3)*#1 + (11 - 3*A1 +
A2)*#1^2 + (-6 + A1)*#1^3 + #1^4 & , 2]*C[2] + x^Root[A4 + (-6 + 2*A1 - A2 + A3
)*#1 + (11 - 3*A1 + A2)*#1^2 + (-6 + A1)*#1^3 + #1^4 & , 3]*C[3] + x^Root[A4 + (
-6 + 2*A1 - A2 + A3)*#1 + (11 - 3*A1 + A2)*#1^2 + (-6 + A1)*#1^3 + #1^4 & , 4]*C
[4]}}
Maple raw input
dsolve(x^4*diff(diff(diff(diff(y(x),x),x),x),x)+A1*x^3*diff(diff(diff(y(x),x),x),x)+A2*x^2*diff(diff(y(x),x),x)+A3*x*diff(y(x),x)+A4*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = Sum(x^RootOf(_Z^4+(A1-6)*_Z^3+(A2-3*A1+11)*_Z^2+(A3-A2+2*A1-6)*_Z+A4,inde
x = _a)*_C[_a],_a = 1 .. 4)