4.46.15 A1x3y(x)+x4y(x)+A2x2y(x)+A3xy(x)+A4y(x)=0

ODE
A1x3y(x)+x4y(x)+A2x2y(x)+A3xy(x)+A4y(x)=0 ODE Classification

[[_high_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0140151 (sec), leaf count = 186

{{y(x)c1xRoot[#14+#13(A16)+#12(3A1+A2+11)+#1(2A1A2+A36)+A4&,1]+c2xRoot[#14+#13(A16)+#12(3A1+A2+11)+#1(2A1A2+A36)+A4&,2]+c3xRoot[#14+#13(A16)+#12(3A1+A2+11)+#1(2A1A2+A36)+A4&,3]+c4xRoot[#14+#13(A16)+#12(3A1+A2+11)+#1(2A1A2+A36)+A4&,4]}}

Maple
cpu = 0.018 (sec), leaf count = 51

{y(x)=_a=14xRootOf(_Z4+(A16)_Z3+(A23A1+11)_Z2+(A3A2+2A16)_Z+A4,index=_a)_C_a} Mathematica raw input

DSolve[A4*y[x] + A3*x*y'[x] + A2*x^2*y''[x] + A1*x^3*y'''[x] + x^4*y''''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> x^Root[A4 + (-6 + 2*A1 - A2 + A3)*#1 + (11 - 3*A1 + A2)*#1^2 + (-6 + A
1)*#1^3 + #1^4 & , 1]*C[1] + x^Root[A4 + (-6 + 2*A1 - A2 + A3)*#1 + (11 - 3*A1 +
 A2)*#1^2 + (-6 + A1)*#1^3 + #1^4 & , 2]*C[2] + x^Root[A4 + (-6 + 2*A1 - A2 + A3
)*#1 + (11 - 3*A1 + A2)*#1^2 + (-6 + A1)*#1^3 + #1^4 & , 3]*C[3] + x^Root[A4 + (
-6 + 2*A1 - A2 + A3)*#1 + (11 - 3*A1 + A2)*#1^2 + (-6 + A1)*#1^3 + #1^4 & , 4]*C
[4]}}

Maple raw input

dsolve(x^4*diff(diff(diff(diff(y(x),x),x),x),x)+A1*x^3*diff(diff(diff(y(x),x),x),x)+A2*x^2*diff(diff(y(x),x),x)+A3*x*diff(y(x),x)+A4*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = Sum(x^RootOf(_Z^4+(A1-6)*_Z^3+(A2-3*A1+11)*_Z^2+(A3-A2+2*A1-6)*_Z+A4,inde
x = _a)*_C[_a],_a = 1 .. 4)