ODE
\[ x^{n+\frac {1}{2}} y^{(2 n+1)}(x)=y(x) \] ODE Classification
(ODEtools/info) missing specification of intermediate function
Book solution method
TO DO
Mathematica ✗
cpu = 0.0051665 (sec), leaf count = 0 , could not solve
DSolve[x^(1/2 + n)*Derivative[1 + 2*n][y][x] == y[x], y[x], x]
Maple ✗
cpu = 0.034 (sec), leaf count = 0 , exception
unable to handle ODEs of undefined differential order
Mathematica raw input
DSolve[x^(1/2 + n)*Derivative[1 + 2*n][y][x] == y[x],y[x],x]
Mathematica raw output
DSolve[x^(1/2 + n)*Derivative[1 + 2*n][y][x] == y[x], y[x], x]
Maple raw input
dsolve(diff(y(x),[`$`(x,1+2*n)])*x^(n+1/2) = y(x), y(x),'implicit')
Maple raw output
unable to handle ODEs of undefined differential order