4.1.24 y(x)=4xcsc(x)(y(x)tan2(x)+1)

ODE
y(x)=4xcsc(x)(y(x)tan2(x)+1) ODE Classification

[_linear]

Book solution method
Linear ODE

Mathematica
cpu = 28.6501 (sec), leaf count = 155

{{y(x)exp(4iLi2(eix)4iLi2(eix)+4x(log(1eix)log(1+eix)))(c1+1x4K[1]cos(2K[1])csc(K[1])sec2(K[1])exp(4iLi2(eiK[1])+4iLi2(eiK[1])+4K[1](log(1+eiK[1])log(1eiK[1])))dK[1])}}

Maple
cpu = 1.476 (sec), leaf count = 125

{y(x)=e4i(polylog(2,eix)polylog(2,eix))(1eix)4x(1+eix)4x(44x(1eix)4x(1+eix)4xe4i(polylog(2,eix)polylog(2,eix))(sin(3x)+sin(x))1+cos(4x)dx+_C1)} Mathematica raw input

DSolve[y'[x] == 4*x*Csc[x]*(1 - Tan[x]^2 + y[x]),y[x],x]

Mathematica raw output

{{y[x] -> E^(4*x*(Log[1 - E^(I*x)] - Log[1 + E^(I*x)]) + (4*I)*PolyLog[2, -E^(I*
x)] - (4*I)*PolyLog[2, E^(I*x)])*(C[1] + Integrate[4*E^(4*K[1]*(-Log[1 - E^(I*K[
1])] + Log[1 + E^(I*K[1])]) - (4*I)*PolyLog[2, -E^(I*K[1])] + (4*I)*PolyLog[2, E
^(I*K[1])])*Cos[2*K[1]]*Csc[K[1]]*K[1]*Sec[K[1]]^2, {K[1], 1, x}])}}

Maple raw input

dsolve(diff(y(x),x) = 4*csc(x)*x*(1-tan(x)^2+y(x)), y(x),'implicit')

Maple raw output

y(x) = exp(-4*I*(polylog(2,exp(I*x))-polylog(2,-exp(I*x))))*(1-exp(I*x))^(4*x)*(
1+exp(I*x))^(-4*x)*(4*Int(4*x*(1-exp(I*x))^(-4*x)*(1+exp(I*x))^(4*x)*exp(4*I*(po
lylog(2,exp(I*x))-polylog(2,-exp(I*x))))*(-sin(3*x)+sin(x))/(-1+cos(4*x)),x)+_C1
)