[_rational, _Abel]
Book solution method
Abel ODE, Second kind
Mathematica ✓
cpu = 0.871592 (sec), leaf count = 279
Maple ✓
cpu = 0.095 (sec), leaf count = 308
DSolve[a*y[x]^2 + b*x^2*y[x]^3 + x^2*y'[x] == 0,y[x],x]
Mathematica raw output
Solve[C[1] + (AiryAiPrime[(x^2 + 2*a*x*y[x] + (a^2 - 2*b*x^3)*y[x]^2)/(2*2^(1/3)
*a^(2/3)*b^(2/3)*x^2*y[x]^2)] + (AiryAi[(x^2 + 2*a*x*y[x] + (a^2 - 2*b*x^3)*y[x]
^2)/(2*2^(1/3)*a^(2/3)*b^(2/3)*x^2*y[x]^2)]*(x + a*y[x]))/(2^(2/3)*a^(1/3)*b^(1/
3)*x*y[x]))/(AiryBiPrime[(x^2 + 2*a*x*y[x] + (a^2 - 2*b*x^3)*y[x]^2)/(2*2^(1/3)*
a^(2/3)*b^(2/3)*x^2*y[x]^2)] + (AiryBi[(x^2 + 2*a*x*y[x] + (a^2 - 2*b*x^3)*y[x]^
2)/(2*2^(1/3)*a^(2/3)*b^(2/3)*x^2*y[x]^2)]*(x + a*y[x]))/(2^(2/3)*a^(1/3)*b^(1/3
)*x*y[x])) == 0, y[x]]
Maple raw input
dsolve(x^2*diff(y(x),x)+a*y(x)^2+b*x^2*y(x)^3 = 0, y(x),'implicit')
Maple raw output
_C1+(a*AiryAi((1/2/b*2^(1/3)*(a^2*b^2)^(1/3)/x+1/2/(a^2*b^2)^(2/3)*2^(1/3)*a*b/y
(x))^2-1/2*b*2^(2/3)/(a^2*b^2)^(1/3)*x)*b*2^(1/3)*(x+a*y(x))+2*(a^2*b^2)^(2/3)*A
iryAi(1,(1/2/b*2^(1/3)*(a^2*b^2)^(1/3)/x+1/2/(a^2*b^2)^(2/3)*2^(1/3)*a*b/y(x))^2
-1/2*b*2^(2/3)/(a^2*b^2)^(1/3)*x)*x*y(x))/(a*AiryBi((1/2/b*2^(1/3)*(a^2*b^2)^(1/
3)/x+1/2/(a^2*b^2)^(2/3)*2^(1/3)*a*b/y(x))^2-1/2*b*2^(2/3)/(a^2*b^2)^(1/3)*x)*b*
2^(1/3)*(x+a*y(x))+2*(a^2*b^2)^(2/3)*AiryBi(1,(1/2/b*2^(1/3)*(a^2*b^2)^(1/3)/x+1
/2/(a^2*b^2)^(2/3)*2^(1/3)*a*b/y(x))^2-1/2*b*2^(2/3)/(a^2*b^2)^(1/3)*x)*x*y(x))
= 0