4.7.6 (x2+1)y(x)=x2y(x)cot1(x)+1

ODE
(x2+1)y(x)=x2y(x)cot1(x)+1 ODE Classification

[_linear]

Book solution method
Linear ODE

Mathematica
cpu = 599.991 (sec), leaf count = 0 , timed out

$Aborted

Maple
cpu = 0.33 (sec), leaf count = 27

{y(x)=(e(π2arctan(x))28dx+_C1)e(arccot(x))22} Mathematica raw input

DSolve[(1 + x^2)*y'[x] == 1 + x^2 - ArcCot[x]*y[x],y[x],x]

Mathematica raw output

$Aborted

Maple raw input

dsolve((x^2+1)*diff(y(x),x) = 1+x^2-y(x)*arccot(x), y(x),'implicit')

Maple raw output

y(x) = (Int(exp(-1/8*(Pi-2*arctan(x))^2),x)+_C1)*exp(1/2*arccot(x)^2)