4.7.22 x(a+x)y(x)=y(x)(b+cy(x))

ODE
x(a+x)y(x)=y(x)(b+cy(x)) ODE Classification

[_separable]

Book solution method
Separable ODE, Neither variable missing

Mathematica
cpu = 0.043622 (sec), leaf count = 50

{{y(x)bebc1xbacebc1xba(a+x)ba}}

Maple
cpu = 0.022 (sec), leaf count = 33

{cb(a+x)baxba_C1+(y(x))1=0} Mathematica raw input

DSolve[x*(a + x)*y'[x] == y[x]*(b + c*y[x]),y[x],x]

Mathematica raw output

{{y[x] -> -((b*E^(b*C[1])*x^(b/a))/(c*E^(b*C[1])*x^(b/a) - (a + x)^(b/a)))}}

Maple raw input

dsolve(x*(a+x)*diff(y(x),x) = (b+c*y(x))*y(x), y(x),'implicit')

Maple raw output

1/b*c-(a+x)^(b/a)*x^(-b/a)*_C1+1/y(x) = 0