4.7.38 2(1x)xy(x)+(1x)y(x)2+x=0

ODE
2(1x)xy(x)+(1x)y(x)2+x=0 ODE Classification

[_rational, _Riccati]

Book solution method
Riccati ODE, Generalized ODE

Mathematica
cpu = 0.0746079 (sec), leaf count = 63

{{y(x)2(πG2,22,0(x|12,320,1)+c1(K(x)E(x)))πG2,22,0(x|12,320,0)+2c1E(x)}}

Maple
cpu = 0.203 (sec), leaf count = 97

{y(x)=x2+2x(LegendreQ(12,1,2xx)_C1LegendreQ(12,1,2xx)_C1+LegendreP(12,1,2xx)LegendreP(12,1,2xx))(LegendreQ(12,1,2xx)_C1+LegendreP(12,1,2xx))1} Mathematica raw input

DSolve[x + (1 - x)*y[x]^2 + 2*(1 - x)*x*y'[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (-2*(C[1]*(-EllipticE[x] + EllipticK[x]) + Pi*MeijerG[{{}, {1/2, 3/2}}
, {{0, 1}, {}}, x]))/(2*C[1]*EllipticE[x] + Pi*MeijerG[{{}, {1/2, 3/2}}, {{0, 0}
, {}}, x])}}

Maple raw input

dsolve(2*x*(1-x)*diff(y(x),x)+x+(1-x)*y(x)^2 = 0, y(x),'implicit')

Maple raw output

y(x) = 1/2*x*(LegendreQ(-1/2,1,(2-x)/x)*_C1-LegendreQ(1/2,1,(2-x)/x)*_C1+Legendr
eP(-1/2,1,(2-x)/x)-LegendreP(1/2,1,(2-x)/x))/(LegendreQ(-1/2,1,(2-x)/x)*_C1+Lege
ndreP(-1/2,1,(2-x)/x))/(-1+x)