ODE
\[ y'(x)=2 (y(x) \tan (2 x)+\sec (2 x)+1) \] ODE Classification
[_linear]
Book solution method
Linear ODE
Mathematica ✓
cpu = 0.0442997 (sec), leaf count = 20
\[\left \{\left \{y(x)\to \sec (2 x) \left (c_1+2 x+\sin (2 x)\right )\right \}\right \}\]
Maple ✓
cpu = 0.485 (sec), leaf count = 100
\[ \left \{ y \left ( x \right ) ={\frac {1}{\sin \left ( 2\,x \right ) } \left ( x\sin \left ( 4\,x \right ) \sqrt { \left ( \cos \left ( 4\,x \right ) +1 \right ) ^{-1}}\sqrt {2\,\cos \left ( 4\,x \right ) +2}\sqrt {2+2\, \left ( \tan \left ( 2\,x \right ) \right ) ^{2}}+\sqrt {1+ \left ( \tan \left ( 2\,x \right ) \right ) ^{2}} \left ( {\it \_C1}\,\sin \left ( 2\,x \right ) \sqrt {2\,\cos \left ( 4\,x \right ) +2}+{\frac {\cos \left ( 2\,x \right ) }{2}}-{\frac {\cos \left ( 6\,x \right ) }{2}} \right ) \right ) {\frac {1}{\sqrt {2\,\cos \left ( 4\,x \right ) +2}}}} \right \} \] Mathematica raw input
DSolve[y'[x] == 2*(1 + Sec[2*x] + Tan[2*x]*y[x]),y[x],x]
Mathematica raw output
{{y[x] -> Sec[2*x]*(2*x + C[1] + Sin[2*x])}}
Maple raw input
dsolve(diff(y(x),x) = 2+2*sec(2*x)+2*y(x)*tan(2*x), y(x),'implicit')
Maple raw output
y(x) = (x*sin(4*x)*(1/(cos(4*x)+1))^(1/2)*(2*cos(4*x)+2)^(1/2)*(2+2*tan(2*x)^2)^
(1/2)+(1+tan(2*x)^2)^(1/2)*(_C1*sin(2*x)*(2*cos(4*x)+2)^(1/2)+1/2*cos(2*x)-1/2*c
os(6*x)))/(2*cos(4*x)+2)^(1/2)/sin(2*x)