ODE
\[ y'(x)=y(x) (a+\sin (\log (x))+\cos (\log (x))) \] ODE Classification
[_separable]
Book solution method
Separable ODE, Neither variable missing
Mathematica ✓
cpu = 0.0148363 (sec), leaf count = 17
\[\left \{\left \{y(x)\to c_1 e^{x (a+\sin (\log (x)))}\right \}\right \}\]
Maple ✓
cpu = 0.011 (sec), leaf count = 14
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{x \left ( \sin \left ( \ln \left ( x \right ) \right ) +a \right ) }} \right \} \] Mathematica raw input
DSolve[y'[x] == (a + Cos[Log[x]] + Sin[Log[x]])*y[x],y[x],x]
Mathematica raw output
{{y[x] -> E^(x*(a + Sin[Log[x]]))*C[1]}}
Maple raw input
dsolve(diff(y(x),x) = (a+cos(ln(x))+sin(ln(x)))*y(x), y(x),'implicit')
Maple raw output
y(x) = _C1*exp(x*(sin(ln(x))+a))