4.8.12 \(x \left (1-x^2\right ) y'(x)=a x^3+\left (1-2 x^2\right ) y(x)\)

ODE
\[ x \left (1-x^2\right ) y'(x)=a x^3+\left (1-2 x^2\right ) y(x) \] ODE Classification

[_linear]

Book solution method
Linear ODE

Mathematica
cpu = 0.0161483 (sec), leaf count = 23

\[\left \{\left \{y(x)\to x \left (a+c_1 \sqrt {1-x^2}\right )\right \}\right \}\]

Maple
cpu = 0.026 (sec), leaf count = 20

\[ \left \{ y \left ( x \right ) =x \left ( \sqrt {-1+x}\sqrt {1+x}{\it \_C1}+a \right ) \right \} \] Mathematica raw input

DSolve[x*(1 - x^2)*y'[x] == a*x^3 + (1 - 2*x^2)*y[x],y[x],x]

Mathematica raw output

{{y[x] -> x*(a + Sqrt[1 - x^2]*C[1])}}

Maple raw input

dsolve(x*(-x^2+1)*diff(y(x),x) = a*x^3+(-2*x^2+1)*y(x), y(x),'implicit')

Maple raw output

y(x) = x*((-1+x)^(1/2)*(1+x)^(1/2)*_C1+a)