4.8.35 xny(x)=x2n1y(x)2

ODE
xny(x)=x2n1y(x)2 ODE Classification

[_Riccati]

Book solution method
Riccati ODE, Generalized ODE

Mathematica
cpu = 0.0675225 (sec), leaf count = 222

{{y(x)xn1(c1(1)n+1xΓ(n)In2(2x)+c1(1)n+1Γ(n)In1(2x)+c1(1)nnΓ(n)In1(2x)+c1(1)n+1xΓ(n)In(2x)(n1)Γ(2n)I1n(2x)+xΓ(2n)I2n(2x)+xΓ(2n)In(2x))2(c1(1)n+1Γ(n)In1(2x)+Γ(2n)I1n(2x))}}

Maple
cpu = 0.084 (sec), leaf count = 52

{y(x)=xn(Kn(2x)_C1+In(2x))1x(Kn1(2x)_C1+In1(2x))1} Mathematica raw input

DSolve[x^n*y'[x] == x^(-1 + 2*n) - y[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> (x^(-1 + n)*(-((-1 + n)*BesselI[1 - n, 2*Sqrt[x]]*Gamma[2 - n]) + Sqrt
[x]*BesselI[2 - n, 2*Sqrt[x]]*Gamma[2 - n] + Sqrt[x]*BesselI[-n, 2*Sqrt[x]]*Gamm
a[2 - n] + (-1)^(1 + n)*Sqrt[x]*BesselI[-2 + n, 2*Sqrt[x]]*C[1]*Gamma[n] + (-1)^
(1 + n)*BesselI[-1 + n, 2*Sqrt[x]]*C[1]*Gamma[n] + (-1)^n*n*BesselI[-1 + n, 2*Sq
rt[x]]*C[1]*Gamma[n] + (-1)^(1 + n)*Sqrt[x]*BesselI[n, 2*Sqrt[x]]*C[1]*Gamma[n])
)/(2*(BesselI[1 - n, 2*Sqrt[x]]*Gamma[2 - n] + (-1)^(1 + n)*BesselI[-1 + n, 2*Sq
rt[x]]*C[1]*Gamma[n]))}}

Maple raw input

dsolve(x^n*diff(y(x),x) = x^(2*n-1)-y(x)^2, y(x),'implicit')

Maple raw output

y(x) = 1/x^(1/2)*(-BesselK(n,2*x^(1/2))*_C1+BesselI(n,2*x^(1/2)))*x^n/(BesselK(n
-1,2*x^(1/2))*_C1+BesselI(n-1,2*x^(1/2)))