[_Riccati]
Book solution method
Riccati ODE, Generalized ODE
Mathematica ✓
cpu = 0.0675225 (sec), leaf count = 222
Maple ✓
cpu = 0.084 (sec), leaf count = 52
DSolve[x^n*y'[x] == x^(-1 + 2*n) - y[x]^2,y[x],x]
Mathematica raw output
{{y[x] -> (x^(-1 + n)*(-((-1 + n)*BesselI[1 - n, 2*Sqrt[x]]*Gamma[2 - n]) + Sqrt
[x]*BesselI[2 - n, 2*Sqrt[x]]*Gamma[2 - n] + Sqrt[x]*BesselI[-n, 2*Sqrt[x]]*Gamm
a[2 - n] + (-1)^(1 + n)*Sqrt[x]*BesselI[-2 + n, 2*Sqrt[x]]*C[1]*Gamma[n] + (-1)^
(1 + n)*BesselI[-1 + n, 2*Sqrt[x]]*C[1]*Gamma[n] + (-1)^n*n*BesselI[-1 + n, 2*Sq
rt[x]]*C[1]*Gamma[n] + (-1)^(1 + n)*Sqrt[x]*BesselI[n, 2*Sqrt[x]]*C[1]*Gamma[n])
)/(2*(BesselI[1 - n, 2*Sqrt[x]]*Gamma[2 - n] + (-1)^(1 + n)*BesselI[-1 + n, 2*Sq
rt[x]]*C[1]*Gamma[n]))}}
Maple raw input
dsolve(x^n*diff(y(x),x) = x^(2*n-1)-y(x)^2, y(x),'implicit')
Maple raw output
y(x) = 1/x^(1/2)*(-BesselK(n,2*x^(1/2))*_C1+BesselI(n,2*x^(1/2)))*x^n/(BesselK(n
-1,2*x^(1/2))*_C1+BesselI(n-1,2*x^(1/2)))