ODE
\[ x^3+y(x) y'(x)+y(x)=0 \] ODE Classification
[_rational, [_Abel, `2nd type`, `class A`]]
Book solution method
Abel ODE, Second kind
Mathematica ✗
cpu = 3.33664 (sec), leaf count = 0 , could not solve
DSolve[x^3 + y[x] + y[x]*Derivative[1][y][x] == 0, y[x], x]
Maple ✗
cpu = 1.775 (sec), leaf count = 0 , could not solve
dsolve(y(x)*diff(y(x),x)+x^3+y(x) = 0, y(x),'implicit')
Mathematica raw input
DSolve[x^3 + y[x] + y[x]*y'[x] == 0,y[x],x]
Mathematica raw output
DSolve[x^3 + y[x] + y[x]*Derivative[1][y][x] == 0, y[x], x]
Maple raw input
dsolve(y(x)*diff(y(x),x)+x^3+y(x) = 0, y(x),'implicit')
Maple raw output
dsolve(y(x)*diff(y(x),x)+x^3+y(x) = 0, y(x),'implicit')