4.9.34 g(x)f(x2+y(x)2)+y(x)y(x)+x=0

ODE
g(x)f(x2+y(x)2)+y(x)y(x)+x=0 ODE Classification

[NONE]

Book solution method
Change of Variable, new dependent variable

Mathematica
cpu = 28.2166 (sec), leaf count = 92

Solve[c1=1y(x)(K[2]f(K[2]2+x2)1x2K[1]K[2]f(K[1]2+K[2]2)f(K[1]2+K[2]2)2dK[1])dK[2]+1x(K[1]f(K[1]2+y(x)2)+g(K[1]))dK[1],y(x)]

Maple
cpu = 0.125 (sec), leaf count = 30

{_by(x)_af(_a2+x2)d_a+g(x)dx_C1=0} Mathematica raw input

DSolve[x + f[x^2 + y[x]^2]*g[x] + y[x]*y'[x] == 0,y[x],x]

Mathematica raw output

Solve[C[1] == Integrate[g[K[1]] + K[1]/f[K[1]^2 + y[x]^2], {K[1], 1, x}] + Integ
rate[-Integrate[(-2*K[1]*K[2]*Derivative[1][f][K[1]^2 + K[2]^2])/f[K[1]^2 + K[2]
^2]^2, {K[1], 1, x}] + K[2]/f[x^2 + K[2]^2], {K[2], 1, y[x]}], y[x]]

Maple raw input

dsolve(y(x)*diff(y(x),x)+x+f(x^2+y(x)^2)*g(x) = 0, y(x),'implicit')

Maple raw output

Int(1/f(_a^2+x^2)*_a,_a = _b .. y(x))+Int(g(x),x)-_C1 = 0