4.10.4 (y(x)3x+1)y(x)=2(xy(x))

ODE
(y(x)3x+1)y(x)=2(xy(x)) ODE Classification

[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

Book solution method
Equation linear in the variables, y(x)=f(X1X2)

Mathematica
cpu = 0.35677 (sec), leaf count = 4937

{{y(x)3x1Root[(65536e24c125x8262144e24c125x7+458752e24c125x6458752e24c125x5+286720e24c125x4114688e24c125x3+28672e24c125x2+16x24096e24c125x16x+256e24c125+4)#18+(131072e24c125x7+458752e24c125x6688128e24c125x5+573440e24c125x4286720e24c125x3+86016e24c125x214336e24c125x32x+1024e24c125+16)#17+(114688e24c125x6344064e24c125x5+430080e24c125x4286720e24c125x3+107520e24c125x221504e24c125x+1792e24c125+16)#16+(57344e24c125x5+143360e24c125x4143360e24c125x3+71680e24c125x217920e24c125x+1792e24c125)#15+(17920e24c125x435840e24c125x3+26880e24c125x28960e24c125x+1120e24c125)#14+(3584e24c125x3+5376e24c125x22688e24c125x+448e24c125)#13+(448e24c125x2448e24c125x+112e24c125)#12+(16e24c12532e24c125x)#1+e24c125&,1]1},{y(x)3x1Root[(65536e24c125x8262144e24c125x7+458752e24c125x6458752e24c125x5+286720e24c125x4114688e24c125x3+28672e24c125x2+16x24096e24c125x16x+256e24c125+4)#18+(131072e24c125x7+458752e24c125x6688128e24c125x5+573440e24c125x4286720e24c125x3+86016e24c125x214336e24c125x32x+1024e24c125+16)#17+(114688e24c125x6344064e24c125x5+430080e24c125x4286720e24c125x3+107520e24c125x221504e24c125x+1792e24c125+16)#16+(57344e24c125x5+143360e24c125x4143360e24c125x3+71680e24c125x217920e24c125x+1792e24c125)#15+(17920e24c125x435840e24c125x3+26880e24c125x28960e24c125x+1120e24c125)#14+(3584e24c125x3+5376e24c125x22688e24c125x+448e24c125)#13+(448e24c125x2448e24c125x+112e24c125)#12+(16e24c12532e24c125x)#1+e24c125&,2]1},{y(x)3x1Root[(65536e24c125x8262144e24c125x7+458752e24c125x6458752e24c125x5+286720e24c125x4114688e24c125x3+28672e24c125x2+16x24096e24c125x16x+256e24c125+4)#18+(131072e24c125x7+458752e24c125x6688128e24c125x5+573440e24c125x4286720e24c125x3+86016e24c125x214336e24c125x32x+1024e24c125+16)#17+(114688e24c125x6344064e24c125x5+430080e24c125x4286720e24c125x3+107520e24c125x221504e24c125x+1792e24c125+16)#16+(57344e24c125x5+143360e24c125x4143360e24c125x3+71680e24c125x217920e24c125x+1792e24c125)#15+(17920e24c125x435840e24c125x3+26880e24c125x28960e24c125x+1120e24c125)#14+(3584e24c125x3+5376e24c125x22688e24c125x+448e24c125)#13+(448e24c125x2448e24c125x+112e24c125)#12+(16e24c12532e24c125x)#1+e24c125&,3]1},{y(x)3x1Root[(65536e24c125x8262144e24c125x7+458752e24c125x6458752e24c125x5+286720e24c125x4114688e24c125x3+28672e24c125x2+16x24096e24c125x16x+256e24c125+4)#18+(131072e24c125x7+458752e24c125x6688128e24c125x5+573440e24c125x4286720e24c125x3+86016e24c125x214336e24c125x32x+1024e24c125+16)#17+(114688e24c125x6344064e24c125x5+430080e24c125x4286720e24c125x3+107520e24c125x221504e24c125x+1792e24c125+16)#16+(57344e24c125x5+143360e24c125x4143360e24c125x3+71680e24c125x217920e24c125x+1792e24c125)#15+(17920e24c125x435840e24c125x3+26880e24c125x28960e24c125x+1120e24c125)#14+(3584e24c125x3+5376e24c125x22688e24c125x+448e24c125)#13+(448e24c125x2448e24c125x+112e24c125)#12+(16e24c12532e24c125x)#1+e24c125&,4]1},{y(x)3x1Root[(65536e24c125x8262144e24c125x7+458752e24c125x6458752e24c125x5+286720e24c125x4114688e24c125x3+28672e24c125x2+16x24096e24c125x16x+256e24c125+4)#18+(131072e24c125x7+458752e24c125x6688128e24c125x5+573440e24c125x4286720e24c125x3+86016e24c125x214336e24c125x32x+1024e24c125+16)#17+(114688e24c125x6344064e24c125x5+430080e24c125x4286720e24c125x3+107520e24c125x221504e24c125x+1792e24c125+16)#16+(57344e24c125x5+143360e24c125x4143360e24c125x3+71680e24c125x217920e24c125x+1792e24c125)#15+(17920e24c125x435840e24c125x3+26880e24c125x28960e24c125x+1120e24c125)#14+(3584e24c125x3+5376e24c125x22688e24c125x+448e24c125)#13+(448e24c125x2448e24c125x+112e24c125)#12+(16e24c12532e24c125x)#1+e24c125&,5]1},{y(x)3x1Root[(65536e24c125x8262144e24c125x7+458752e24c125x6458752e24c125x5+286720e24c125x4114688e24c125x3+28672e24c125x2+16x24096e24c125x16x+256e24c125+4)#18+(131072e24c125x7+458752e24c125x6688128e24c125x5+573440e24c125x4286720e24c125x3+86016e24c125x214336e24c125x32x+1024e24c125+16)#17+(114688e24c125x6344064e24c125x5+430080e24c125x4286720e24c125x3+107520e24c125x221504e24c125x+1792e24c125+16)#16+(57344e24c125x5+143360e24c125x4143360e24c125x3+71680e24c125x217920e24c125x+1792e24c125)#15+(17920e24c125x435840e24c125x3+26880e24c125x28960e24c125x+1120e24c125)#14+(3584e24c125x3+5376e24c125x22688e24c125x+448e24c125)#13+(448e24c125x2448e24c125x+112e24c125)#12+(16e24c12532e24c125x)#1+e24c125&,6]1},{y(x)3x1Root[(65536e24c125x8262144e24c125x7+458752e24c125x6458752e24c125x5+286720e24c125x4114688e24c125x3+28672e24c125x2+16x24096e24c125x16x+256e24c125+4)#18+(131072e24c125x7+458752e24c125x6688128e24c125x5+573440e24c125x4286720e24c125x3+86016e24c125x214336e24c125x32x+1024e24c125+16)#17+(114688e24c125x6344064e24c125x5+430080e24c125x4286720e24c125x3+107520e24c125x221504e24c125x+1792e24c125+16)#16+(57344e24c125x5+143360e24c125x4143360e24c125x3+71680e24c125x217920e24c125x+1792e24c125)#15+(17920e24c125x435840e24c125x3+26880e24c125x28960e24c125x+1120e24c125)#14+(3584e24c125x3+5376e24c125x22688e24c125x+448e24c125)#13+(448e24c125x2448e24c125x+112e24c125)#12+(16e24c12532e24c125x)#1+e24c125&,7]1},{y(x)3x1Root[(65536e24c125x8262144e24c125x7+458752e24c125x6458752e24c125x5+286720e24c125x4114688e24c125x3+28672e24c125x2+16x24096e24c125x16x+256e24c125+4)#18+(131072e24c125x7+458752e24c125x6688128e24c125x5+573440e24c125x4286720e24c125x3+86016e24c125x214336e24c125x32x+1024e24c125+16)#17+(114688e24c125x6344064e24c125x5+430080e24c125x4286720e24c125x3+107520e24c125x221504e24c125x+1792e24c125+16)#16+(57344e24c125x5+143360e24c125x4143360e24c125x3+71680e24c125x217920e24c125x+1792e24c125)#15+(17920e24c125x435840e24c125x3+26880e24c125x28960e24c125x+1120e24c125)#14+(3584e24c125x3+5376e24c125x22688e24c125x+448e24c125)#13+(448e24c125x2448e24c125x+112e24c125)#12+(16e24c12532e24c125x)#1+e24c125&,8]1}}

Maple
cpu = 0.03 (sec), leaf count = 55

{13ln(2y(x)+4x11+2x)43ln(22y(x)2x1+2x)ln(1+2x)_C1=0} Mathematica raw input

DSolve[(1 - 3*x + y[x])*y'[x] == 2*(x - y[x]),y[x],x]

Mathematica raw output

{{y[x] -> -1 + 3*x - Root[E^((24*C[1])/25) + (16*E^((24*C[1])/25) - 32*E^((24*C[
1])/25)*x)*#1 + (112*E^((24*C[1])/25) - 448*E^((24*C[1])/25)*x + 448*E^((24*C[1]
)/25)*x^2)*#1^2 + (448*E^((24*C[1])/25) - 2688*E^((24*C[1])/25)*x + 5376*E^((24*
C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*x^3)*#1^3 + (1120*E^((24*C[1])/25) - 8960*
E^((24*C[1])/25)*x + 26880*E^((24*C[1])/25)*x^2 - 35840*E^((24*C[1])/25)*x^3 + 1
7920*E^((24*C[1])/25)*x^4)*#1^4 + (1792*E^((24*C[1])/25) - 17920*E^((24*C[1])/25
)*x + 71680*E^((24*C[1])/25)*x^2 - 143360*E^((24*C[1])/25)*x^3 + 143360*E^((24*C
[1])/25)*x^4 - 57344*E^((24*C[1])/25)*x^5)*#1^5 + (16 + 1792*E^((24*C[1])/25) - 
21504*E^((24*C[1])/25)*x + 107520*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)
*x^3 + 430080*E^((24*C[1])/25)*x^4 - 344064*E^((24*C[1])/25)*x^5 + 114688*E^((24
*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((24*C[1])/25) - 32*x - 14336*E^((24*C[1])/2
5)*x + 86016*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 573440*E^((24*
C[1])/25)*x^4 - 688128*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 1310
72*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 256*E^((24*C[1])/25) - 16*x - 4096*E^((24*C
[1])/25)*x + 16*x^2 + 28672*E^((24*C[1])/25)*x^2 - 114688*E^((24*C[1])/25)*x^3 +
 286720*E^((24*C[1])/25)*x^4 - 458752*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])
/25)*x^6 - 262144*E^((24*C[1])/25)*x^7 + 65536*E^((24*C[1])/25)*x^8)*#1^8 & , 1]
^(-1)}, {y[x] -> -1 + 3*x - Root[E^((24*C[1])/25) + (16*E^((24*C[1])/25) - 32*E^
((24*C[1])/25)*x)*#1 + (112*E^((24*C[1])/25) - 448*E^((24*C[1])/25)*x + 448*E^((
24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C[1])/25) - 2688*E^((24*C[1])/25)*x + 5376*
E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*x^3)*#1^3 + (1120*E^((24*C[1])/25) 
- 8960*E^((24*C[1])/25)*x + 26880*E^((24*C[1])/25)*x^2 - 35840*E^((24*C[1])/25)*
x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4 + (1792*E^((24*C[1])/25) - 17920*E^((24*C
[1])/25)*x + 71680*E^((24*C[1])/25)*x^2 - 143360*E^((24*C[1])/25)*x^3 + 143360*E
^((24*C[1])/25)*x^4 - 57344*E^((24*C[1])/25)*x^5)*#1^5 + (16 + 1792*E^((24*C[1])
/25) - 21504*E^((24*C[1])/25)*x + 107520*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[
1])/25)*x^3 + 430080*E^((24*C[1])/25)*x^4 - 344064*E^((24*C[1])/25)*x^5 + 114688
*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((24*C[1])/25) - 32*x - 14336*E^((24*
C[1])/25)*x + 86016*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 573440*
E^((24*C[1])/25)*x^4 - 688128*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6
 - 131072*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 256*E^((24*C[1])/25) - 16*x - 4096*E
^((24*C[1])/25)*x + 16*x^2 + 28672*E^((24*C[1])/25)*x^2 - 114688*E^((24*C[1])/25
)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 458752*E^((24*C[1])/25)*x^5 + 458752*E^((2
4*C[1])/25)*x^6 - 262144*E^((24*C[1])/25)*x^7 + 65536*E^((24*C[1])/25)*x^8)*#1^8
 & , 2]^(-1)}, {y[x] -> -1 + 3*x - Root[E^((24*C[1])/25) + (16*E^((24*C[1])/25) 
- 32*E^((24*C[1])/25)*x)*#1 + (112*E^((24*C[1])/25) - 448*E^((24*C[1])/25)*x + 4
48*E^((24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C[1])/25) - 2688*E^((24*C[1])/25)*x 
+ 5376*E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*x^3)*#1^3 + (1120*E^((24*C[1
])/25) - 8960*E^((24*C[1])/25)*x + 26880*E^((24*C[1])/25)*x^2 - 35840*E^((24*C[1
])/25)*x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4 + (1792*E^((24*C[1])/25) - 17920*E
^((24*C[1])/25)*x + 71680*E^((24*C[1])/25)*x^2 - 143360*E^((24*C[1])/25)*x^3 + 1
43360*E^((24*C[1])/25)*x^4 - 57344*E^((24*C[1])/25)*x^5)*#1^5 + (16 + 1792*E^((2
4*C[1])/25) - 21504*E^((24*C[1])/25)*x + 107520*E^((24*C[1])/25)*x^2 - 286720*E^
((24*C[1])/25)*x^3 + 430080*E^((24*C[1])/25)*x^4 - 344064*E^((24*C[1])/25)*x^5 +
 114688*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((24*C[1])/25) - 32*x - 14336*
E^((24*C[1])/25)*x + 86016*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 
573440*E^((24*C[1])/25)*x^4 - 688128*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/
25)*x^6 - 131072*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 256*E^((24*C[1])/25) - 16*x -
 4096*E^((24*C[1])/25)*x + 16*x^2 + 28672*E^((24*C[1])/25)*x^2 - 114688*E^((24*C
[1])/25)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 458752*E^((24*C[1])/25)*x^5 + 45875
2*E^((24*C[1])/25)*x^6 - 262144*E^((24*C[1])/25)*x^7 + 65536*E^((24*C[1])/25)*x^
8)*#1^8 & , 3]^(-1)}, {y[x] -> -1 + 3*x - Root[E^((24*C[1])/25) + (16*E^((24*C[1
])/25) - 32*E^((24*C[1])/25)*x)*#1 + (112*E^((24*C[1])/25) - 448*E^((24*C[1])/25
)*x + 448*E^((24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C[1])/25) - 2688*E^((24*C[1])
/25)*x + 5376*E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*x^3)*#1^3 + (1120*E^(
(24*C[1])/25) - 8960*E^((24*C[1])/25)*x + 26880*E^((24*C[1])/25)*x^2 - 35840*E^(
(24*C[1])/25)*x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4 + (1792*E^((24*C[1])/25) - 
17920*E^((24*C[1])/25)*x + 71680*E^((24*C[1])/25)*x^2 - 143360*E^((24*C[1])/25)*
x^3 + 143360*E^((24*C[1])/25)*x^4 - 57344*E^((24*C[1])/25)*x^5)*#1^5 + (16 + 179
2*E^((24*C[1])/25) - 21504*E^((24*C[1])/25)*x + 107520*E^((24*C[1])/25)*x^2 - 28
6720*E^((24*C[1])/25)*x^3 + 430080*E^((24*C[1])/25)*x^4 - 344064*E^((24*C[1])/25
)*x^5 + 114688*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((24*C[1])/25) - 32*x -
 14336*E^((24*C[1])/25)*x + 86016*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)
*x^3 + 573440*E^((24*C[1])/25)*x^4 - 688128*E^((24*C[1])/25)*x^5 + 458752*E^((24
*C[1])/25)*x^6 - 131072*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 256*E^((24*C[1])/25) -
 16*x - 4096*E^((24*C[1])/25)*x + 16*x^2 + 28672*E^((24*C[1])/25)*x^2 - 114688*E
^((24*C[1])/25)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 458752*E^((24*C[1])/25)*x^5 
+ 458752*E^((24*C[1])/25)*x^6 - 262144*E^((24*C[1])/25)*x^7 + 65536*E^((24*C[1])
/25)*x^8)*#1^8 & , 4]^(-1)}, {y[x] -> -1 + 3*x - Root[E^((24*C[1])/25) + (16*E^(
(24*C[1])/25) - 32*E^((24*C[1])/25)*x)*#1 + (112*E^((24*C[1])/25) - 448*E^((24*C
[1])/25)*x + 448*E^((24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C[1])/25) - 2688*E^((2
4*C[1])/25)*x + 5376*E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*x^3)*#1^3 + (1
120*E^((24*C[1])/25) - 8960*E^((24*C[1])/25)*x + 26880*E^((24*C[1])/25)*x^2 - 35
840*E^((24*C[1])/25)*x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4 + (1792*E^((24*C[1])
/25) - 17920*E^((24*C[1])/25)*x + 71680*E^((24*C[1])/25)*x^2 - 143360*E^((24*C[1
])/25)*x^3 + 143360*E^((24*C[1])/25)*x^4 - 57344*E^((24*C[1])/25)*x^5)*#1^5 + (1
6 + 1792*E^((24*C[1])/25) - 21504*E^((24*C[1])/25)*x + 107520*E^((24*C[1])/25)*x
^2 - 286720*E^((24*C[1])/25)*x^3 + 430080*E^((24*C[1])/25)*x^4 - 344064*E^((24*C
[1])/25)*x^5 + 114688*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((24*C[1])/25) -
 32*x - 14336*E^((24*C[1])/25)*x + 86016*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[
1])/25)*x^3 + 573440*E^((24*C[1])/25)*x^4 - 688128*E^((24*C[1])/25)*x^5 + 458752
*E^((24*C[1])/25)*x^6 - 131072*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 256*E^((24*C[1]
)/25) - 16*x - 4096*E^((24*C[1])/25)*x + 16*x^2 + 28672*E^((24*C[1])/25)*x^2 - 1
14688*E^((24*C[1])/25)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 458752*E^((24*C[1])/2
5)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 262144*E^((24*C[1])/25)*x^7 + 65536*E^((2
4*C[1])/25)*x^8)*#1^8 & , 5]^(-1)}, {y[x] -> -1 + 3*x - Root[E^((24*C[1])/25) + 
(16*E^((24*C[1])/25) - 32*E^((24*C[1])/25)*x)*#1 + (112*E^((24*C[1])/25) - 448*E
^((24*C[1])/25)*x + 448*E^((24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C[1])/25) - 268
8*E^((24*C[1])/25)*x + 5376*E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*x^3)*#1
^3 + (1120*E^((24*C[1])/25) - 8960*E^((24*C[1])/25)*x + 26880*E^((24*C[1])/25)*x
^2 - 35840*E^((24*C[1])/25)*x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4 + (1792*E^((2
4*C[1])/25) - 17920*E^((24*C[1])/25)*x + 71680*E^((24*C[1])/25)*x^2 - 143360*E^(
(24*C[1])/25)*x^3 + 143360*E^((24*C[1])/25)*x^4 - 57344*E^((24*C[1])/25)*x^5)*#1
^5 + (16 + 1792*E^((24*C[1])/25) - 21504*E^((24*C[1])/25)*x + 107520*E^((24*C[1]
)/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 430080*E^((24*C[1])/25)*x^4 - 344064*E
^((24*C[1])/25)*x^5 + 114688*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((24*C[1]
)/25) - 32*x - 14336*E^((24*C[1])/25)*x + 86016*E^((24*C[1])/25)*x^2 - 286720*E^
((24*C[1])/25)*x^3 + 573440*E^((24*C[1])/25)*x^4 - 688128*E^((24*C[1])/25)*x^5 +
 458752*E^((24*C[1])/25)*x^6 - 131072*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 256*E^((
24*C[1])/25) - 16*x - 4096*E^((24*C[1])/25)*x + 16*x^2 + 28672*E^((24*C[1])/25)*
x^2 - 114688*E^((24*C[1])/25)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 458752*E^((24*
C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 262144*E^((24*C[1])/25)*x^7 + 6553
6*E^((24*C[1])/25)*x^8)*#1^8 & , 6]^(-1)}, {y[x] -> -1 + 3*x - Root[E^((24*C[1])
/25) + (16*E^((24*C[1])/25) - 32*E^((24*C[1])/25)*x)*#1 + (112*E^((24*C[1])/25) 
- 448*E^((24*C[1])/25)*x + 448*E^((24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C[1])/25
) - 2688*E^((24*C[1])/25)*x + 5376*E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*
x^3)*#1^3 + (1120*E^((24*C[1])/25) - 8960*E^((24*C[1])/25)*x + 26880*E^((24*C[1]
)/25)*x^2 - 35840*E^((24*C[1])/25)*x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4 + (179
2*E^((24*C[1])/25) - 17920*E^((24*C[1])/25)*x + 71680*E^((24*C[1])/25)*x^2 - 143
360*E^((24*C[1])/25)*x^3 + 143360*E^((24*C[1])/25)*x^4 - 57344*E^((24*C[1])/25)*
x^5)*#1^5 + (16 + 1792*E^((24*C[1])/25) - 21504*E^((24*C[1])/25)*x + 107520*E^((
24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 430080*E^((24*C[1])/25)*x^4 - 3
44064*E^((24*C[1])/25)*x^5 + 114688*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((
24*C[1])/25) - 32*x - 14336*E^((24*C[1])/25)*x + 86016*E^((24*C[1])/25)*x^2 - 28
6720*E^((24*C[1])/25)*x^3 + 573440*E^((24*C[1])/25)*x^4 - 688128*E^((24*C[1])/25
)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 131072*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 2
56*E^((24*C[1])/25) - 16*x - 4096*E^((24*C[1])/25)*x + 16*x^2 + 28672*E^((24*C[1
])/25)*x^2 - 114688*E^((24*C[1])/25)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 458752*
E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 262144*E^((24*C[1])/25)*x^7
 + 65536*E^((24*C[1])/25)*x^8)*#1^8 & , 7]^(-1)}, {y[x] -> -1 + 3*x - Root[E^((2
4*C[1])/25) + (16*E^((24*C[1])/25) - 32*E^((24*C[1])/25)*x)*#1 + (112*E^((24*C[1
])/25) - 448*E^((24*C[1])/25)*x + 448*E^((24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C
[1])/25) - 2688*E^((24*C[1])/25)*x + 5376*E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1
])/25)*x^3)*#1^3 + (1120*E^((24*C[1])/25) - 8960*E^((24*C[1])/25)*x + 26880*E^((
24*C[1])/25)*x^2 - 35840*E^((24*C[1])/25)*x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4
 + (1792*E^((24*C[1])/25) - 17920*E^((24*C[1])/25)*x + 71680*E^((24*C[1])/25)*x^
2 - 143360*E^((24*C[1])/25)*x^3 + 143360*E^((24*C[1])/25)*x^4 - 57344*E^((24*C[1
])/25)*x^5)*#1^5 + (16 + 1792*E^((24*C[1])/25) - 21504*E^((24*C[1])/25)*x + 1075
20*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 430080*E^((24*C[1])/25)*
x^4 - 344064*E^((24*C[1])/25)*x^5 + 114688*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 10
24*E^((24*C[1])/25) - 32*x - 14336*E^((24*C[1])/25)*x + 86016*E^((24*C[1])/25)*x
^2 - 286720*E^((24*C[1])/25)*x^3 + 573440*E^((24*C[1])/25)*x^4 - 688128*E^((24*C
[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 131072*E^((24*C[1])/25)*x^7)*#1^7 +
 (4 + 256*E^((24*C[1])/25) - 16*x - 4096*E^((24*C[1])/25)*x + 16*x^2 + 28672*E^(
(24*C[1])/25)*x^2 - 114688*E^((24*C[1])/25)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 
458752*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 262144*E^((24*C[1])/
25)*x^7 + 65536*E^((24*C[1])/25)*x^8)*#1^8 & , 8]^(-1)}}

Maple raw input

dsolve((1-3*x+y(x))*diff(y(x),x) = 2*x-2*y(x), y(x),'implicit')

Maple raw output

1/3*ln((-2*y(x)+4*x-1)/(-1+2*x))-4/3*ln((2-2*y(x)-2*x)/(-1+2*x))-ln(-1+2*x)-_C1 
= 0