ODE
\[ (y(x)-3 x+1) y'(x)=2 (x-y(x)) \] ODE Classification
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
Book solution method
Equation linear in the variables, \(y'(x)=f\left ( \frac {X_1}{X_2} \right ) \)
Mathematica ✓
cpu = 0.35677 (sec), leaf count = 4937
\[\left \{\left \{y(x)\to 3 x-\frac {1}{\text {Root}\left [\left (65536 e^{\frac {24 c_1}{25}} x^8-262144 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-458752 e^{\frac {24 c_1}{25}} x^5+286720 e^{\frac {24 c_1}{25}} x^4-114688 e^{\frac {24 c_1}{25}} x^3+28672 e^{\frac {24 c_1}{25}} x^2+16 x^2-4096 e^{\frac {24 c_1}{25}} x-16 x+256 e^{\frac {24 c_1}{25}}+4\right ) \text {$\#$1}^8+\left (-131072 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-688128 e^{\frac {24 c_1}{25}} x^5+573440 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+86016 e^{\frac {24 c_1}{25}} x^2-14336 e^{\frac {24 c_1}{25}} x-32 x+1024 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^7+\left (114688 e^{\frac {24 c_1}{25}} x^6-344064 e^{\frac {24 c_1}{25}} x^5+430080 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+107520 e^{\frac {24 c_1}{25}} x^2-21504 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^6+\left (-57344 e^{\frac {24 c_1}{25}} x^5+143360 e^{\frac {24 c_1}{25}} x^4-143360 e^{\frac {24 c_1}{25}} x^3+71680 e^{\frac {24 c_1}{25}} x^2-17920 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^5+\left (17920 e^{\frac {24 c_1}{25}} x^4-35840 e^{\frac {24 c_1}{25}} x^3+26880 e^{\frac {24 c_1}{25}} x^2-8960 e^{\frac {24 c_1}{25}} x+1120 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^4+\left (-3584 e^{\frac {24 c_1}{25}} x^3+5376 e^{\frac {24 c_1}{25}} x^2-2688 e^{\frac {24 c_1}{25}} x+448 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^3+\left (448 e^{\frac {24 c_1}{25}} x^2-448 e^{\frac {24 c_1}{25}} x+112 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^2+\left (16 e^{\frac {24 c_1}{25}}-32 e^{\frac {24 c_1}{25}} x\right ) \text {$\#$1}+e^{\frac {24 c_1}{25}}\& ,1\right ]}-1\right \},\left \{y(x)\to 3 x-\frac {1}{\text {Root}\left [\left (65536 e^{\frac {24 c_1}{25}} x^8-262144 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-458752 e^{\frac {24 c_1}{25}} x^5+286720 e^{\frac {24 c_1}{25}} x^4-114688 e^{\frac {24 c_1}{25}} x^3+28672 e^{\frac {24 c_1}{25}} x^2+16 x^2-4096 e^{\frac {24 c_1}{25}} x-16 x+256 e^{\frac {24 c_1}{25}}+4\right ) \text {$\#$1}^8+\left (-131072 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-688128 e^{\frac {24 c_1}{25}} x^5+573440 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+86016 e^{\frac {24 c_1}{25}} x^2-14336 e^{\frac {24 c_1}{25}} x-32 x+1024 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^7+\left (114688 e^{\frac {24 c_1}{25}} x^6-344064 e^{\frac {24 c_1}{25}} x^5+430080 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+107520 e^{\frac {24 c_1}{25}} x^2-21504 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^6+\left (-57344 e^{\frac {24 c_1}{25}} x^5+143360 e^{\frac {24 c_1}{25}} x^4-143360 e^{\frac {24 c_1}{25}} x^3+71680 e^{\frac {24 c_1}{25}} x^2-17920 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^5+\left (17920 e^{\frac {24 c_1}{25}} x^4-35840 e^{\frac {24 c_1}{25}} x^3+26880 e^{\frac {24 c_1}{25}} x^2-8960 e^{\frac {24 c_1}{25}} x+1120 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^4+\left (-3584 e^{\frac {24 c_1}{25}} x^3+5376 e^{\frac {24 c_1}{25}} x^2-2688 e^{\frac {24 c_1}{25}} x+448 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^3+\left (448 e^{\frac {24 c_1}{25}} x^2-448 e^{\frac {24 c_1}{25}} x+112 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^2+\left (16 e^{\frac {24 c_1}{25}}-32 e^{\frac {24 c_1}{25}} x\right ) \text {$\#$1}+e^{\frac {24 c_1}{25}}\& ,2\right ]}-1\right \},\left \{y(x)\to 3 x-\frac {1}{\text {Root}\left [\left (65536 e^{\frac {24 c_1}{25}} x^8-262144 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-458752 e^{\frac {24 c_1}{25}} x^5+286720 e^{\frac {24 c_1}{25}} x^4-114688 e^{\frac {24 c_1}{25}} x^3+28672 e^{\frac {24 c_1}{25}} x^2+16 x^2-4096 e^{\frac {24 c_1}{25}} x-16 x+256 e^{\frac {24 c_1}{25}}+4\right ) \text {$\#$1}^8+\left (-131072 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-688128 e^{\frac {24 c_1}{25}} x^5+573440 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+86016 e^{\frac {24 c_1}{25}} x^2-14336 e^{\frac {24 c_1}{25}} x-32 x+1024 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^7+\left (114688 e^{\frac {24 c_1}{25}} x^6-344064 e^{\frac {24 c_1}{25}} x^5+430080 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+107520 e^{\frac {24 c_1}{25}} x^2-21504 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^6+\left (-57344 e^{\frac {24 c_1}{25}} x^5+143360 e^{\frac {24 c_1}{25}} x^4-143360 e^{\frac {24 c_1}{25}} x^3+71680 e^{\frac {24 c_1}{25}} x^2-17920 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^5+\left (17920 e^{\frac {24 c_1}{25}} x^4-35840 e^{\frac {24 c_1}{25}} x^3+26880 e^{\frac {24 c_1}{25}} x^2-8960 e^{\frac {24 c_1}{25}} x+1120 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^4+\left (-3584 e^{\frac {24 c_1}{25}} x^3+5376 e^{\frac {24 c_1}{25}} x^2-2688 e^{\frac {24 c_1}{25}} x+448 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^3+\left (448 e^{\frac {24 c_1}{25}} x^2-448 e^{\frac {24 c_1}{25}} x+112 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^2+\left (16 e^{\frac {24 c_1}{25}}-32 e^{\frac {24 c_1}{25}} x\right ) \text {$\#$1}+e^{\frac {24 c_1}{25}}\& ,3\right ]}-1\right \},\left \{y(x)\to 3 x-\frac {1}{\text {Root}\left [\left (65536 e^{\frac {24 c_1}{25}} x^8-262144 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-458752 e^{\frac {24 c_1}{25}} x^5+286720 e^{\frac {24 c_1}{25}} x^4-114688 e^{\frac {24 c_1}{25}} x^3+28672 e^{\frac {24 c_1}{25}} x^2+16 x^2-4096 e^{\frac {24 c_1}{25}} x-16 x+256 e^{\frac {24 c_1}{25}}+4\right ) \text {$\#$1}^8+\left (-131072 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-688128 e^{\frac {24 c_1}{25}} x^5+573440 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+86016 e^{\frac {24 c_1}{25}} x^2-14336 e^{\frac {24 c_1}{25}} x-32 x+1024 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^7+\left (114688 e^{\frac {24 c_1}{25}} x^6-344064 e^{\frac {24 c_1}{25}} x^5+430080 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+107520 e^{\frac {24 c_1}{25}} x^2-21504 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^6+\left (-57344 e^{\frac {24 c_1}{25}} x^5+143360 e^{\frac {24 c_1}{25}} x^4-143360 e^{\frac {24 c_1}{25}} x^3+71680 e^{\frac {24 c_1}{25}} x^2-17920 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^5+\left (17920 e^{\frac {24 c_1}{25}} x^4-35840 e^{\frac {24 c_1}{25}} x^3+26880 e^{\frac {24 c_1}{25}} x^2-8960 e^{\frac {24 c_1}{25}} x+1120 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^4+\left (-3584 e^{\frac {24 c_1}{25}} x^3+5376 e^{\frac {24 c_1}{25}} x^2-2688 e^{\frac {24 c_1}{25}} x+448 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^3+\left (448 e^{\frac {24 c_1}{25}} x^2-448 e^{\frac {24 c_1}{25}} x+112 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^2+\left (16 e^{\frac {24 c_1}{25}}-32 e^{\frac {24 c_1}{25}} x\right ) \text {$\#$1}+e^{\frac {24 c_1}{25}}\& ,4\right ]}-1\right \},\left \{y(x)\to 3 x-\frac {1}{\text {Root}\left [\left (65536 e^{\frac {24 c_1}{25}} x^8-262144 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-458752 e^{\frac {24 c_1}{25}} x^5+286720 e^{\frac {24 c_1}{25}} x^4-114688 e^{\frac {24 c_1}{25}} x^3+28672 e^{\frac {24 c_1}{25}} x^2+16 x^2-4096 e^{\frac {24 c_1}{25}} x-16 x+256 e^{\frac {24 c_1}{25}}+4\right ) \text {$\#$1}^8+\left (-131072 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-688128 e^{\frac {24 c_1}{25}} x^5+573440 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+86016 e^{\frac {24 c_1}{25}} x^2-14336 e^{\frac {24 c_1}{25}} x-32 x+1024 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^7+\left (114688 e^{\frac {24 c_1}{25}} x^6-344064 e^{\frac {24 c_1}{25}} x^5+430080 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+107520 e^{\frac {24 c_1}{25}} x^2-21504 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^6+\left (-57344 e^{\frac {24 c_1}{25}} x^5+143360 e^{\frac {24 c_1}{25}} x^4-143360 e^{\frac {24 c_1}{25}} x^3+71680 e^{\frac {24 c_1}{25}} x^2-17920 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^5+\left (17920 e^{\frac {24 c_1}{25}} x^4-35840 e^{\frac {24 c_1}{25}} x^3+26880 e^{\frac {24 c_1}{25}} x^2-8960 e^{\frac {24 c_1}{25}} x+1120 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^4+\left (-3584 e^{\frac {24 c_1}{25}} x^3+5376 e^{\frac {24 c_1}{25}} x^2-2688 e^{\frac {24 c_1}{25}} x+448 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^3+\left (448 e^{\frac {24 c_1}{25}} x^2-448 e^{\frac {24 c_1}{25}} x+112 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^2+\left (16 e^{\frac {24 c_1}{25}}-32 e^{\frac {24 c_1}{25}} x\right ) \text {$\#$1}+e^{\frac {24 c_1}{25}}\& ,5\right ]}-1\right \},\left \{y(x)\to 3 x-\frac {1}{\text {Root}\left [\left (65536 e^{\frac {24 c_1}{25}} x^8-262144 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-458752 e^{\frac {24 c_1}{25}} x^5+286720 e^{\frac {24 c_1}{25}} x^4-114688 e^{\frac {24 c_1}{25}} x^3+28672 e^{\frac {24 c_1}{25}} x^2+16 x^2-4096 e^{\frac {24 c_1}{25}} x-16 x+256 e^{\frac {24 c_1}{25}}+4\right ) \text {$\#$1}^8+\left (-131072 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-688128 e^{\frac {24 c_1}{25}} x^5+573440 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+86016 e^{\frac {24 c_1}{25}} x^2-14336 e^{\frac {24 c_1}{25}} x-32 x+1024 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^7+\left (114688 e^{\frac {24 c_1}{25}} x^6-344064 e^{\frac {24 c_1}{25}} x^5+430080 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+107520 e^{\frac {24 c_1}{25}} x^2-21504 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^6+\left (-57344 e^{\frac {24 c_1}{25}} x^5+143360 e^{\frac {24 c_1}{25}} x^4-143360 e^{\frac {24 c_1}{25}} x^3+71680 e^{\frac {24 c_1}{25}} x^2-17920 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^5+\left (17920 e^{\frac {24 c_1}{25}} x^4-35840 e^{\frac {24 c_1}{25}} x^3+26880 e^{\frac {24 c_1}{25}} x^2-8960 e^{\frac {24 c_1}{25}} x+1120 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^4+\left (-3584 e^{\frac {24 c_1}{25}} x^3+5376 e^{\frac {24 c_1}{25}} x^2-2688 e^{\frac {24 c_1}{25}} x+448 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^3+\left (448 e^{\frac {24 c_1}{25}} x^2-448 e^{\frac {24 c_1}{25}} x+112 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^2+\left (16 e^{\frac {24 c_1}{25}}-32 e^{\frac {24 c_1}{25}} x\right ) \text {$\#$1}+e^{\frac {24 c_1}{25}}\& ,6\right ]}-1\right \},\left \{y(x)\to 3 x-\frac {1}{\text {Root}\left [\left (65536 e^{\frac {24 c_1}{25}} x^8-262144 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-458752 e^{\frac {24 c_1}{25}} x^5+286720 e^{\frac {24 c_1}{25}} x^4-114688 e^{\frac {24 c_1}{25}} x^3+28672 e^{\frac {24 c_1}{25}} x^2+16 x^2-4096 e^{\frac {24 c_1}{25}} x-16 x+256 e^{\frac {24 c_1}{25}}+4\right ) \text {$\#$1}^8+\left (-131072 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-688128 e^{\frac {24 c_1}{25}} x^5+573440 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+86016 e^{\frac {24 c_1}{25}} x^2-14336 e^{\frac {24 c_1}{25}} x-32 x+1024 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^7+\left (114688 e^{\frac {24 c_1}{25}} x^6-344064 e^{\frac {24 c_1}{25}} x^5+430080 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+107520 e^{\frac {24 c_1}{25}} x^2-21504 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^6+\left (-57344 e^{\frac {24 c_1}{25}} x^5+143360 e^{\frac {24 c_1}{25}} x^4-143360 e^{\frac {24 c_1}{25}} x^3+71680 e^{\frac {24 c_1}{25}} x^2-17920 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^5+\left (17920 e^{\frac {24 c_1}{25}} x^4-35840 e^{\frac {24 c_1}{25}} x^3+26880 e^{\frac {24 c_1}{25}} x^2-8960 e^{\frac {24 c_1}{25}} x+1120 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^4+\left (-3584 e^{\frac {24 c_1}{25}} x^3+5376 e^{\frac {24 c_1}{25}} x^2-2688 e^{\frac {24 c_1}{25}} x+448 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^3+\left (448 e^{\frac {24 c_1}{25}} x^2-448 e^{\frac {24 c_1}{25}} x+112 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^2+\left (16 e^{\frac {24 c_1}{25}}-32 e^{\frac {24 c_1}{25}} x\right ) \text {$\#$1}+e^{\frac {24 c_1}{25}}\& ,7\right ]}-1\right \},\left \{y(x)\to 3 x-\frac {1}{\text {Root}\left [\left (65536 e^{\frac {24 c_1}{25}} x^8-262144 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-458752 e^{\frac {24 c_1}{25}} x^5+286720 e^{\frac {24 c_1}{25}} x^4-114688 e^{\frac {24 c_1}{25}} x^3+28672 e^{\frac {24 c_1}{25}} x^2+16 x^2-4096 e^{\frac {24 c_1}{25}} x-16 x+256 e^{\frac {24 c_1}{25}}+4\right ) \text {$\#$1}^8+\left (-131072 e^{\frac {24 c_1}{25}} x^7+458752 e^{\frac {24 c_1}{25}} x^6-688128 e^{\frac {24 c_1}{25}} x^5+573440 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+86016 e^{\frac {24 c_1}{25}} x^2-14336 e^{\frac {24 c_1}{25}} x-32 x+1024 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^7+\left (114688 e^{\frac {24 c_1}{25}} x^6-344064 e^{\frac {24 c_1}{25}} x^5+430080 e^{\frac {24 c_1}{25}} x^4-286720 e^{\frac {24 c_1}{25}} x^3+107520 e^{\frac {24 c_1}{25}} x^2-21504 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}+16\right ) \text {$\#$1}^6+\left (-57344 e^{\frac {24 c_1}{25}} x^5+143360 e^{\frac {24 c_1}{25}} x^4-143360 e^{\frac {24 c_1}{25}} x^3+71680 e^{\frac {24 c_1}{25}} x^2-17920 e^{\frac {24 c_1}{25}} x+1792 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^5+\left (17920 e^{\frac {24 c_1}{25}} x^4-35840 e^{\frac {24 c_1}{25}} x^3+26880 e^{\frac {24 c_1}{25}} x^2-8960 e^{\frac {24 c_1}{25}} x+1120 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^4+\left (-3584 e^{\frac {24 c_1}{25}} x^3+5376 e^{\frac {24 c_1}{25}} x^2-2688 e^{\frac {24 c_1}{25}} x+448 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^3+\left (448 e^{\frac {24 c_1}{25}} x^2-448 e^{\frac {24 c_1}{25}} x+112 e^{\frac {24 c_1}{25}}\right ) \text {$\#$1}^2+\left (16 e^{\frac {24 c_1}{25}}-32 e^{\frac {24 c_1}{25}} x\right ) \text {$\#$1}+e^{\frac {24 c_1}{25}}\& ,8\right ]}-1\right \}\right \}\]
Maple ✓
cpu = 0.03 (sec), leaf count = 55
\[ \left \{ {\frac {1}{3}\ln \left ( {\frac {-2\,y \left ( x \right ) +4\,x-1}{-1+2\,x}} \right ) }-{\frac {4}{3}\ln \left ( {\frac {2-2\,y \left ( x \right ) -2\,x}{-1+2\,x}} \right ) }-\ln \left ( -1+2\,x \right ) -{\it \_C1}=0 \right \} \] Mathematica raw input
DSolve[(1 - 3*x + y[x])*y'[x] == 2*(x - y[x]),y[x],x]
Mathematica raw output
{{y[x] -> -1 + 3*x - Root[E^((24*C[1])/25) + (16*E^((24*C[1])/25) - 32*E^((24*C[1])/25)*x)*#1 + (112*E^((24*C[1])/25) - 448*E^((24*C[1])/25)*x + 448*E^((24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C[1])/25) - 2688*E^((24*C[1])/25)*x + 5376*E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*x^3)*#1^3 + (1120*E^((24*C[1])/25) - 8960*E^((24*C[1])/25)*x + 26880*E^((24*C[1])/25)*x^2 - 35840*E^((24*C[1])/25)*x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4 + (1792*E^((24*C[1])/25) - 17920*E^((24*C[1])/25)*x + 71680*E^((24*C[1])/25)*x^2 - 143360*E^((24*C[1])/25)*x^3 + 143360*E^((24*C[1])/25)*x^4 - 57344*E^((24*C[1])/25)*x^5)*#1^5 + (16 + 1792*E^((24*C[1])/25) - 21504*E^((24*C[1])/25)*x + 107520*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 430080*E^((24*C[1])/25)*x^4 - 344064*E^((24*C[1])/25)*x^5 + 114688*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((24*C[1])/25) - 32*x - 14336*E^((24*C[1])/25)*x + 86016*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 573440*E^((24*C[1])/25)*x^4 - 688128*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 131072*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 256*E^((24*C[1])/25) - 16*x - 4096*E^((24*C[1])/25)*x + 16*x^2 + 28672*E^((24*C[1])/25)*x^2 - 114688*E^((24*C[1])/25)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 458752*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 262144*E^((24*C[1])/25)*x^7 + 65536*E^((24*C[1])/25)*x^8)*#1^8 & , 1]^(-1)}, {y[x] -> -1 + 3*x - Root[E^((24*C[1])/25) + (16*E^((24*C[1])/25) - 32*E^((24*C[1])/25)*x)*#1 + (112*E^((24*C[1])/25) - 448*E^((24*C[1])/25)*x + 448*E^((24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C[1])/25) - 2688*E^((24*C[1])/25)*x + 5376*E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*x^3)*#1^3 + (1120*E^((24*C[1])/25) - 8960*E^((24*C[1])/25)*x + 26880*E^((24*C[1])/25)*x^2 - 35840*E^((24*C[1])/25)*x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4 + (1792*E^((24*C[1])/25) - 17920*E^((24*C[1])/25)*x + 71680*E^((24*C[1])/25)*x^2 - 143360*E^((24*C[1])/25)*x^3 + 143360*E^((24*C[1])/25)*x^4 - 57344*E^((24*C[1])/25)*x^5)*#1^5 + (16 + 1792*E^((24*C[1])/25) - 21504*E^((24*C[1])/25)*x + 107520*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 430080*E^((24*C[1])/25)*x^4 - 344064*E^((24*C[1])/25)*x^5 + 114688*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((24*C[1])/25) - 32*x - 14336*E^((24*C[1])/25)*x + 86016*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 573440*E^((24*C[1])/25)*x^4 - 688128*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 131072*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 256*E^((24*C[1])/25) - 16*x - 4096*E^((24*C[1])/25)*x + 16*x^2 + 28672*E^((24*C[1])/25)*x^2 - 114688*E^((24*C[1])/25)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 458752*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 262144*E^((24*C[1])/25)*x^7 + 65536*E^((24*C[1])/25)*x^8)*#1^8 & , 2]^(-1)}, {y[x] -> -1 + 3*x - Root[E^((24*C[1])/25) + (16*E^((24*C[1])/25) - 32*E^((24*C[1])/25)*x)*#1 + (112*E^((24*C[1])/25) - 448*E^((24*C[1])/25)*x + 448*E^((24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C[1])/25) - 2688*E^((24*C[1])/25)*x + 5376*E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*x^3)*#1^3 + (1120*E^((24*C[1])/25) - 8960*E^((24*C[1])/25)*x + 26880*E^((24*C[1])/25)*x^2 - 35840*E^((24*C[1])/25)*x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4 + (1792*E^((24*C[1])/25) - 17920*E^((24*C[1])/25)*x + 71680*E^((24*C[1])/25)*x^2 - 143360*E^((24*C[1])/25)*x^3 + 143360*E^((24*C[1])/25)*x^4 - 57344*E^((24*C[1])/25)*x^5)*#1^5 + (16 + 1792*E^((24*C[1])/25) - 21504*E^((24*C[1])/25)*x + 107520*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 430080*E^((24*C[1])/25)*x^4 - 344064*E^((24*C[1])/25)*x^5 + 114688*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((24*C[1])/25) - 32*x - 14336*E^((24*C[1])/25)*x + 86016*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 573440*E^((24*C[1])/25)*x^4 - 688128*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 131072*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 256*E^((24*C[1])/25) - 16*x - 4096*E^((24*C[1])/25)*x + 16*x^2 + 28672*E^((24*C[1])/25)*x^2 - 114688*E^((24*C[1])/25)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 458752*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 262144*E^((24*C[1])/25)*x^7 + 65536*E^((24*C[1])/25)*x^8)*#1^8 & , 3]^(-1)}, {y[x] -> -1 + 3*x - Root[E^((24*C[1])/25) + (16*E^((24*C[1])/25) - 32*E^((24*C[1])/25)*x)*#1 + (112*E^((24*C[1])/25) - 448*E^((24*C[1])/25)*x + 448*E^((24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C[1])/25) - 2688*E^((24*C[1])/25)*x + 5376*E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*x^3)*#1^3 + (1120*E^((24*C[1])/25) - 8960*E^((24*C[1])/25)*x + 26880*E^((24*C[1])/25)*x^2 - 35840*E^((24*C[1])/25)*x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4 + (1792*E^((24*C[1])/25) - 17920*E^((24*C[1])/25)*x + 71680*E^((24*C[1])/25)*x^2 - 143360*E^((24*C[1])/25)*x^3 + 143360*E^((24*C[1])/25)*x^4 - 57344*E^((24*C[1])/25)*x^5)*#1^5 + (16 + 1792*E^((24*C[1])/25) - 21504*E^((24*C[1])/25)*x + 107520*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 430080*E^((24*C[1])/25)*x^4 - 344064*E^((24*C[1])/25)*x^5 + 114688*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((24*C[1])/25) - 32*x - 14336*E^((24*C[1])/25)*x + 86016*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 573440*E^((24*C[1])/25)*x^4 - 688128*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 131072*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 256*E^((24*C[1])/25) - 16*x - 4096*E^((24*C[1])/25)*x + 16*x^2 + 28672*E^((24*C[1])/25)*x^2 - 114688*E^((24*C[1])/25)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 458752*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 262144*E^((24*C[1])/25)*x^7 + 65536*E^((24*C[1])/25)*x^8)*#1^8 & , 4]^(-1)}, {y[x] -> -1 + 3*x - Root[E^((24*C[1])/25) + (16*E^((24*C[1])/25) - 32*E^((24*C[1])/25)*x)*#1 + (112*E^((24*C[1])/25) - 448*E^((24*C[1])/25)*x + 448*E^((24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C[1])/25) - 2688*E^((24*C[1])/25)*x + 5376*E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*x^3)*#1^3 + (1120*E^((24*C[1])/25) - 8960*E^((24*C[1])/25)*x + 26880*E^((24*C[1])/25)*x^2 - 35840*E^((24*C[1])/25)*x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4 + (1792*E^((24*C[1])/25) - 17920*E^((24*C[1])/25)*x + 71680*E^((24*C[1])/25)*x^2 - 143360*E^((24*C[1])/25)*x^3 + 143360*E^((24*C[1])/25)*x^4 - 57344*E^((24*C[1])/25)*x^5)*#1^5 + (16 + 1792*E^((24*C[1])/25) - 21504*E^((24*C[1])/25)*x + 107520*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 430080*E^((24*C[1])/25)*x^4 - 344064*E^((24*C[1])/25)*x^5 + 114688*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((24*C[1])/25) - 32*x - 14336*E^((24*C[1])/25)*x + 86016*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 573440*E^((24*C[1])/25)*x^4 - 688128*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 131072*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 256*E^((24*C[1])/25) - 16*x - 4096*E^((24*C[1])/25)*x + 16*x^2 + 28672*E^((24*C[1])/25)*x^2 - 114688*E^((24*C[1])/25)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 458752*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 262144*E^((24*C[1])/25)*x^7 + 65536*E^((24*C[1])/25)*x^8)*#1^8 & , 5]^(-1)}, {y[x] -> -1 + 3*x - Root[E^((24*C[1])/25) + (16*E^((24*C[1])/25) - 32*E^((24*C[1])/25)*x)*#1 + (112*E^((24*C[1])/25) - 448*E^((24*C[1])/25)*x + 448*E^((24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C[1])/25) - 2688*E^((24*C[1])/25)*x + 5376*E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*x^3)*#1^3 + (1120*E^((24*C[1])/25) - 8960*E^((24*C[1])/25)*x + 26880*E^((24*C[1])/25)*x^2 - 35840*E^((24*C[1])/25)*x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4 + (1792*E^((24*C[1])/25) - 17920*E^((24*C[1])/25)*x + 71680*E^((24*C[1])/25)*x^2 - 143360*E^((24*C[1])/25)*x^3 + 143360*E^((24*C[1])/25)*x^4 - 57344*E^((24*C[1])/25)*x^5)*#1^5 + (16 + 1792*E^((24*C[1])/25) - 21504*E^((24*C[1])/25)*x + 107520*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 430080*E^((24*C[1])/25)*x^4 - 344064*E^((24*C[1])/25)*x^5 + 114688*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((24*C[1])/25) - 32*x - 14336*E^((24*C[1])/25)*x + 86016*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 573440*E^((24*C[1])/25)*x^4 - 688128*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 131072*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 256*E^((24*C[1])/25) - 16*x - 4096*E^((24*C[1])/25)*x + 16*x^2 + 28672*E^((24*C[1])/25)*x^2 - 114688*E^((24*C[1])/25)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 458752*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 262144*E^((24*C[1])/25)*x^7 + 65536*E^((24*C[1])/25)*x^8)*#1^8 & , 6]^(-1)}, {y[x] -> -1 + 3*x - Root[E^((24*C[1])/25) + (16*E^((24*C[1])/25) - 32*E^((24*C[1])/25)*x)*#1 + (112*E^((24*C[1])/25) - 448*E^((24*C[1])/25)*x + 448*E^((24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C[1])/25) - 2688*E^((24*C[1])/25)*x + 5376*E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*x^3)*#1^3 + (1120*E^((24*C[1])/25) - 8960*E^((24*C[1])/25)*x + 26880*E^((24*C[1])/25)*x^2 - 35840*E^((24*C[1])/25)*x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4 + (1792*E^((24*C[1])/25) - 17920*E^((24*C[1])/25)*x + 71680*E^((24*C[1])/25)*x^2 - 143360*E^((24*C[1])/25)*x^3 + 143360*E^((24*C[1])/25)*x^4 - 57344*E^((24*C[1])/25)*x^5)*#1^5 + (16 + 1792*E^((24*C[1])/25) - 21504*E^((24*C[1])/25)*x + 107520*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 430080*E^((24*C[1])/25)*x^4 - 344064*E^((24*C[1])/25)*x^5 + 114688*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((24*C[1])/25) - 32*x - 14336*E^((24*C[1])/25)*x + 86016*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 573440*E^((24*C[1])/25)*x^4 - 688128*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 131072*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 256*E^((24*C[1])/25) - 16*x - 4096*E^((24*C[1])/25)*x + 16*x^2 + 28672*E^((24*C[1])/25)*x^2 - 114688*E^((24*C[1])/25)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 458752*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 262144*E^((24*C[1])/25)*x^7 + 65536*E^((24*C[1])/25)*x^8)*#1^8 & , 7]^(-1)}, {y[x] -> -1 + 3*x - Root[E^((24*C[1])/25) + (16*E^((24*C[1])/25) - 32*E^((24*C[1])/25)*x)*#1 + (112*E^((24*C[1])/25) - 448*E^((24*C[1])/25)*x + 448*E^((24*C[1])/25)*x^2)*#1^2 + (448*E^((24*C[1])/25) - 2688*E^((24*C[1])/25)*x + 5376*E^((24*C[1])/25)*x^2 - 3584*E^((24*C[1])/25)*x^3)*#1^3 + (1120*E^((24*C[1])/25) - 8960*E^((24*C[1])/25)*x + 26880*E^((24*C[1])/25)*x^2 - 35840*E^((24*C[1])/25)*x^3 + 17920*E^((24*C[1])/25)*x^4)*#1^4 + (1792*E^((24*C[1])/25) - 17920*E^((24*C[1])/25)*x + 71680*E^((24*C[1])/25)*x^2 - 143360*E^((24*C[1])/25)*x^3 + 143360*E^((24*C[1])/25)*x^4 - 57344*E^((24*C[1])/25)*x^5)*#1^5 + (16 + 1792*E^((24*C[1])/25) - 21504*E^((24*C[1])/25)*x + 107520*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 430080*E^((24*C[1])/25)*x^4 - 344064*E^((24*C[1])/25)*x^5 + 114688*E^((24*C[1])/25)*x^6)*#1^6 + (16 + 1024*E^((24*C[1])/25) - 32*x - 14336*E^((24*C[1])/25)*x + 86016*E^((24*C[1])/25)*x^2 - 286720*E^((24*C[1])/25)*x^3 + 573440*E^((24*C[1])/25)*x^4 - 688128*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 131072*E^((24*C[1])/25)*x^7)*#1^7 + (4 + 256*E^((24*C[1])/25) - 16*x - 4096*E^((24*C[1])/25)*x + 16*x^2 + 28672*E^((24*C[1])/25)*x^2 - 114688*E^((24*C[1])/25)*x^3 + 286720*E^((24*C[1])/25)*x^4 - 458752*E^((24*C[1])/25)*x^5 + 458752*E^((24*C[1])/25)*x^6 - 262144*E^((24*C[1])/25)*x^7 + 65536*E^((24*C[1])/25)*x^8)*#1^8 & , 8]^(-1)}}
Maple raw input
dsolve((1-3*x+y(x))*diff(y(x),x) = 2*x-2*y(x), y(x),'implicit')
Maple raw output
1/3*ln((-2*y(x)+4*x-1)/(-1+2*x))-4/3*ln((2-2*y(x)-2*x)/(-1+2*x))-ln(-1+2*x)-_C1 = 0