4.1.49 y(x)=cos(x)y(x)(sin(x)y(x))

ODE
y(x)=cos(x)y(x)(sin(x)y(x)) ODE Classification

[_Riccati]

Book solution method
Riccati ODE, Generalized ODE

Mathematica
cpu = 6.56183 (sec), leaf count = 57

{{y(x)c1sin(x)(1xecos(K[1])dK[1])+c1(ecos(x))+sin(x)c11xecos(K[1])dK[1]+1}}

Maple
cpu = 0.175 (sec), leaf count = 25

{y(x)=ecos(x)_C1+ecos(x)dx+sin(x)} Mathematica raw input

DSolve[y'[x] == Cos[x] - (Sin[x] - y[x])*y[x],y[x],x]

Mathematica raw output

{{y[x] -> (-(C[1]/E^Cos[x]) + Sin[x] + C[1]*Integrate[E^(-Cos[K[1]]), {K[1], 1, 
x}]*Sin[x])/(1 + C[1]*Integrate[E^(-Cos[K[1]]), {K[1], 1, x}])}}

Maple raw input

dsolve(diff(y(x),x) = cos(x)-(sin(x)-y(x))*y(x), y(x),'implicit')

Maple raw output

y(x) = -1/(_C1+Int(exp(-cos(x)),x))*exp(-cos(x))+sin(x)